Xiangang Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6894936/xiangang-hu-publications-by-citations.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 4,088 125 33 h-index g-index citations papers 6.5 130 5,334 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
125	Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. <i>Environmental Pollution</i> , 2010 , 158, 2992-8	9.3	631
124	Health and ecosystem risks of graphene. <i>Chemical Reviews</i> , 2013 , 113, 3815-35	68.1	289
123	Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. <i>Environmental Science & Environmental Science & Technology</i> , 2015 , 49, 10825-33	10.3	136
122	Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. <i>Carbon</i> , 2014 , 80, 665-676	10.4	117
121	Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. <i>Environmental Science & Environmental Science & Environme</i>	10.3	111
120	Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. <i>Nanotoxicology</i> , 2016 , 10, 42-5	5 3 .3	97
119	Graphene oxide amplifies the phytotoxicity of arsenic in wheat. <i>Scientific Reports</i> , 2014 , 4, 6122	4.9	94
118	Envelopment-Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell Chlorella vulgaris Are Dependent on the Nanomaterial Particle Size. <i>ACS Applied Materials & Description of the Materials & Description of the</i>	9.5	87
117	Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. <i>Carbon</i> , 2012 , 50, 2772-2781	10.4	85
116	Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid. <i>Environmental Science & Environmental Scie</i>	10.3	82
115	Ultra-trace graphene oxide in a water environment triggers Parkinson's disease-like symptoms and metabolic disturbance in zebrafish larvae. <i>Biomaterials</i> , 2016 , 93, 83-94	15.6	78
114	Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. <i>Journal of Hazardous Materials</i> , 2016 , 318, 686-693	12.8	75
113	Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 10492-10499	11.5	73
112	Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. <i>Applied Catalysis B: Environmental</i> , 2021 , 281, 119474	21.8	71
111	Graphene Oxide Quantum Dots Reduce Oxidative Stress and Inhibit Neurotoxicity In Vitro and In Vivo through Catalase-Like Activity and Metabolic Regulation. <i>Advanced Science</i> , 2018 , 5, 1700595	13.6	70
110	Knowledge gaps between nanotoxicological research and nanomaterial safety. <i>Environment International</i> , 2016 , 94, 8-23	12.9	70
109	Graphene Oxide Quantum Dots as Novel Nanozymes for Alcohol Intoxication. <i>ACS Applied Materials</i> & Samp; Interfaces, 2017 , 9, 12241-12252	9.5	64

108	Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets. Environmental Science & Environmental Science & Environ	10.3	62
107	Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. <i>Scientific Reports</i> , 2014 , 4, 3782	4.9	62
106	Humic acid acts as a natural antidote of graphene by regulating nanomaterial translocation and metabolic fluxes in vivo. <i>Environmental Science & Environmental Science & Envi</i>	10.3	62
105	Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	59
104	Mitochondria-targeted TPP-MoS with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. <i>Biomaterials</i> , 2020 , 232, 119752	2 ^{15.6}	52
103	L-cysteine: a biocompatible, breathable and beneficial coating for graphene oxide. <i>Biomaterials</i> , 2015 , 52, 301-11	15.6	50
102	Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. <i>Journal of Hazardous Materials</i> , 2012 , 213-214, 387-92	12.8	48
101	Graphene oxide regulates the bacterial community and exhibits property changes in soil. <i>RSC Advances</i> , 2015 , 5, 27009-27017	3.7	44
100	Robust aptamer sol-gel solid phase microextraction of very polar adenosine from human plasma. Journal of Chromatography A, 2013 , 1279, 7-12	4.5	41
99	The Phases of WS Nanosheets Influence Uptake, Oxidative Stress, Lipid Peroxidation, Membrane Damage, and Metabolism in Algae. <i>Environmental Science & Environmental Science &</i>	10.3	40
98	Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model. <i>Environmental Science & Environmental Science & E</i>	10.3	39
97	ssDNA aptamer-based column for simultaneous removal of nanogram per liter level of illicit and analgesic pharmaceuticals in drinking water. <i>Environmental Science & Environmental Science & Environme</i>	10.3	39
96	Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide. <i>Environmental Science & Environmental Scienc</i>	10.3	38
95	Simultaneous Analysis of Selected Typical Antibiotics in Manure by Microwave-Assisted Extraction and LCMSn. <i>Chromatographia</i> , 2010 , 71, 217-223	2.1	37
94	Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish. <i>Carbon</i> , 2017 , 117, 182-191	10.4	35
93	Influence of environmental factors on nanotoxicity and knowledge gaps thereof. <i>NanoImpact</i> , 2016 , 2, 82-92	5.6	33
92	Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies. <i>Journal of Hazardous Materials</i> , 2012 , 225-226, 91-8	12.8	33
91	Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. <i>Environmental Science & Environmental </i>	10.3	32

90	Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity. <i>Environmental Science & Eamp; Technology</i> , 2018 , 52, 4850-4860	10.3	32
89	Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles. <i>Environmental Science & Environmental Scien</i>	10.3	32
88	Integrating proteomics, metabolomics and typical analysis to investigate the uptake and oxidative stress of graphene oxide and polycyclic aromatic hydrocarbons. <i>Environmental Science: Nano</i> , 2018 , 5, 115-129	7.1	32
87	Quantitative analyses of relationships between ecotoxicological effects and combined pollution. <i>Science in China Series C: Life Sciences</i> , 2004 , 47, 332-9		31
86	Super-performance photothermal conversion of 3D macrostructure graphene-CuFeSe2 aerogel contributes to durable and fast clean-up of highly viscous crude oil in seawater. <i>Nano Energy</i> , 2020 , 70, 104511	17.1	30
85	Integrating metabolic analysis with biological endpoints provides insight into nanotoxicological mechanisms of graphene oxide: From effect onset to cessation. <i>Carbon</i> , 2016 , 109, 65-73	10.4	30
84	Solar-assisted fabrication of dimpled 2H-MoS membrane for highly efficient water desalination. <i>Water Research</i> , 2020 , 170, 115367	12.5	30
83	Biotransformation of graphene oxide nanosheets in blood plasma affects their interactions with cells. <i>Environmental Science: Nano</i> , 2017 , 4, 1569-1578	7.1	29
82	Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability. <i>Biomaterials</i> , 2019 , 202, 12-25	15.6	29
81	Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. <i>ACS Applied Materials & District Applied & District </i>	9.5	27
80	Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide. <i>Environmental Science & amp; Technology</i> , 2019 , 53, 7759-7769	10.3	26
79	Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 180, 269-279	7	26
78	Study of the Persistence of the Phytotoxicity Induced by Graphene Oxide Quantum Dots and of the Specific Molecular Mechanisms by Integrating Omics and Regular Analyses. <i>Environmental Science & Environmental Science</i>	10.3	26
77	Characterization of Biological Secretions Binding to Graphene Oxide in Water and the Specific Toxicological Mechanisms. <i>Environmental Science & Environmental Science & Envir</i>	10.3	26
76	Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 184, 109602	7	24
75	Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 159, 221-231	7	24
74	Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. <i>Environmental Science & Environmental Science & Environme</i>	10.3	23
73	Aqueously Released Graphene Oxide Embedded in Epoxy Resin Exhibits Different Characteristics and Phytotoxicity of Chlorella vulgaris from the Pristine Form. <i>Environmental Science & Environmental Sc</i>	10.3	22

(2020-2011)

72	Comparisons of Microwave-Assisted Extraction, Simultaneous Distillation-Solvent Extraction, Soxhlet Extraction and Ultrasound Probe for Polycyclic Musks in Sediments: Recovery, Repeatability, Matrix Effects and Bioavailability. <i>Chromatographia</i> , 2011 , 74, 489-495	2.1	22
71	Effects of the size and oxidation of graphene oxide on crop quality and specific molecular pathways. <i>Carbon</i> , 2018 , 140, 352-361	10.4	21
70	Untargeted Metabolic Pathway Analysis as an Effective Strategy to Connect Various Nanoparticle Properties to Nanoparticle-Induced Ecotoxicity. <i>Environmental Science & Ecotomical Science & Ecotoxicity</i> , 2020, 54, 3395	5 ¹ 3406	20
69	Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano-bio interactions. <i>Nature Communications</i> , 2021 , 12, 493	17.4	20
68	Strategies and knowledge gaps for improving nanomaterial biocompatibility. <i>Environment International</i> , 2017 , 102, 177-189	12.9	19
67	Polymeric nanoparticle-aptamer bioconjugates can diminish the toxicity of mercury in vivo. <i>Toxicology Letters</i> , 2012 , 208, 69-74	4.4	19
66	Emerging investigator series: design of hydrogel nanocomposites for the detection and removal of pollutants: from nanosheets, network structures, and biocompatibility to machine-learning-assisted design. <i>Environmental Science: Nano</i> , 2018 , 5, 2216-2240	7.1	19
65	A 2D-2D heterojunction BiWO/WS as a broad-spectrum bactericide: Sulfur vacancies mediate the interface interactions between biology and nanomaterials. <i>Biomaterials</i> , 2020 , 243, 119937	15.6	18
64	Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. <i>Science Advances</i> , 2021 , 7,	14.3	18
63	Graphene oxide quantum dots stimulate indigenous bacteria to remove oil contamination. <i>Journal of Hazardous Materials</i> , 2019 , 366, 694-702	12.8	17
62	Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. <i>Critical Reviews in Environmental Science and Technology</i> , 2019 , 49, 2314-	2358	15
61	Root exudates as natural ligands that alter the properties of graphene oxide and environmental implications thereof. <i>RSC Advances</i> , 2015 , 5, 17615-17622	3.7	15
60	Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent. <i>Science of the Total Environment</i> , 2018 , 626, 1332-1341	10.2	15
59	Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. <i>Ecotoxicology and Environmental Safety</i> , 2019 , 185, 109664	7	15
58	Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: Performance and mechanisms. <i>Chemical Engineering Journal</i> , 2020 , 386, 123996	14.7	14
57	Predicting nanotoxicity by an integrated machine learning and metabolomics approach. <i>Environmental Pollution</i> , 2020 , 267, 115434	9.3	13
56	Natural Nanocolloids Mediate the Phytotoxicity of Graphene Oxide. <i>Environmental Science & Environmental Science & Technology</i> , 2020 , 54, 4865-4875	10.3	12
55	Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. <i>Environmental Science & Environmental Scien</i>	10.3	12

54	Separation and analysis of carbon nanomaterials in complex matrix. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 80, 416-428	14.6	12
53	Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. <i>Journal of Hazardous Materials</i> , 2021 , 404, 124046	12.8	12
52	Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. <i>Biomaterials</i> , 2021 , 266, 120469	15.6	12
51	Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide. <i>Water Research</i> , 2019 , 165, 114987	12.5	11
50	WS Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. <i>Environmental Science & Environmental Science & Envir</i>	10.3	11
49	Machine Learning Boosts the Design and Discovery of Nanomaterials. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 6130-6147	8.3	11
48	Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 192, 110304	7	10
47	Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. <i>Environmental Science & Environmental Science & En</i>	10.3	10
46	Adsorption behavior of Sudan I-IV on a coastal soil and their forecasted biogeochemical cycles. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 10749-10758	5.1	9
45	Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. <i>Science of the Total Environment</i> , 2020 , 727, 138486	10.2	9
44	Green synthesis of low-toxicity graphene-fulvic acid with an open band gap enhances demethylation of methylmercury. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 9220-7	9.5	9
43	Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. <i>Nanotoxicology</i> , 2017 , 11, 781-793	5.3	8
42	Persistence and Recovery of ZIF-8 and ZIF-67 Phytotoxicity. <i>Environmental Science & Emp; Technology</i> , 2021 , 55, 15301-15312	10.3	8
41	Vegetation alleviate the negative effects of graphene oxide on benzo[a]pyrene dissipation and the associated soil bacterial community. <i>Chemosphere</i> , 2020 , 253, 126725	8.4	7
40	Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance. <i>Nano Letters</i> , 2021 , 21, 9966-9975	11.5	7
39	The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. <i>Nanotoxicology</i> , 2020 , 14, 1137-1155	5.3	7
38	Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 111487	7	6
37	Nanocolloids, but Not Humic Acids, Augment the Phytotoxicity of Single-Layer Molybdenum Disulfide Nanosheets. <i>Environmental Science & Environmental S</i>	10.3	6

(2020-2019)

36	Nanoscale colloids induce metabolic disturbance of zebrafish at environmentally relevant concentrations. <i>Environmental Science: Nano</i> , 2019 , 6, 1562-1575	7.1	5
35	Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. <i>Environment International</i> , 2021 , 158, 106922	12.9	5
34	Screening of safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 2020, 10, 1296	54.9	5
33	Native nanodiscs from blood inhibit pulmonary fibrosis. <i>Biomaterials</i> , 2019 , 192, 51-61	15.6	5
32	Surface atomic arrangement of nanomaterials affects nanotoxicity. <i>Nanotoxicology</i> , 2021 , 15, 114-130	5.3	5
31	Screening Small Metabolites from Cells as Multifunctional Coatings Simultaneously Improves Nanomaterial Biocompatibility and Functionality. <i>Advanced Science</i> , 2018 , 5, 1800341	13.6	5
30	Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review. <i>Nanomaterials</i> , 2021 , 11,	5.4	4
29	Stress Response and Nutrient Homeostasis in Lettuce (Lactuca sativa) Exposed to Graphene Quantum Dots Are Modulated by Particle Surface Functionalization. <i>Advanced Biology</i> , 2021 , 5, e20007	78	4
28	Identifying the Phytotoxicity and Defense Mechanisms Associated with Graphene-Based Nanomaterials by Integrating Multiomics and Regular Analysis. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 9938-9948	10.3	4
27	Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. <i>Water Research</i> , 2021 , 205, 117708	12.5	4
26	Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. Journal of Hazardous Materials, 2022 , 422, 126846	12.8	4
25	Sub-chronic exposure to Tris(1,3-dichloro-2-propyl) phosphate induces sex-dependent hepatotoxicity in rats. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 33351-33362	5.1	3
24	Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. <i>Environmental Pollution</i> , 2020 , 263, 114473	9.3	3
23	Metal status in soils within a developing education park: Potential risk of land development. <i>Land Degradation and Development</i> , 2020 , 31, 430-438	4.4	3
22	Facile Bioself-Assembled Crystals in Plants Promote Photosynthesis and Salt Stress Resistance. <i>ACS Nano</i> , 2021 , 15, 5165-5177	16.7	3
21	Conversion relationships between environmental quality criteria of water/air and soil. <i>Science China Earth Sciences</i> , 2018 , 61, 1781-1791	4.6	3
20	Formation of S defects in MoS2-coated wood for high-efficiency seawater desalination. <i>Environmental Science: Nano</i> , 2021 , 8, 2069-2080	7.1	3
19	Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure. <i>Soil Ecology Letters</i> , 2020 , 2, 176-179	2.7	2

18	Response of soil enzymes, functional bacterial groups, and microbial communities exposed to sudan I-IV. <i>Ecotoxicology and Environmental Safety</i> , 2018 , 166, 328-335	7	2
17	Derived regional soil-environmental quality criteria of metals based on Anhui soil-crop systems at the regulated level <i>Science of the Total Environment</i> , 2022 , 154060	10.2	2
16	Relationships between airborne microbial community diversity, heating supply patterns and particulate matter properties. <i>Journal of Environmental Chemical Engineering</i> , 2022 , 10, 107309	6.8	1
15	Magnetic Field-Guided MoS2/WS2 Heterolayered Nanofilm Regulates Cell Behavior and Gene Expression. <i>ACS Applied Nano Materials</i> , 2021 , 4, 10828-10835	5.6	1
14	The Forms, Distribution, and Risk Assessment of Sulfonamide Antibiotics in the Manure-Soil-Vegetable System of Feedlot Livestock. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 105, 790-797	2.7	1
13	Nanoparticles with Multiple Enzymatic Activities Purified from Groundwater Efficiently Cross the Blood-Brain Barrier, Improve Memory, and Provide Neuroprotection <i>ACS Applied Bio Materials</i> , 2021 , 4, 5503-5519	4.1	1
12	Adsorption-desorption of hydrophilic contaminants rhodamine B with/without Cd on a coastal soil: implications for mariculture and seafood safety. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 34636-34643	5.1	1
11	Bionanoscale Recognition Underlies Cell Fate and Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2101260	10.1	1
10	Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects <i>Journal of Hazardous Materials</i> , 2022 , 432, 128730	12.8	1
9	Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS <i>Journal of Hazardous Materials</i> , 2022 , 429, 128361	12.8	O
8	Anthropogenic impacts on the biodiversity and anti-interference ability of microbial communities in lakes <i>Science of the Total Environment</i> , 2022 , 820, 153264	10.2	O
7	Nanocolloids in drinking water increase the risk of obesity in mice by modulating gut microbes. <i>Environment International</i> , 2021 , 146, 106302	12.9	O
6	Bioavailability and toxicity variation of benzo(a)pyrene in three soil wheat systems: Indicators of soil quality. <i>Land Degradation and Development</i> , 2021 , 32, 3847-3855	4.4	О
5	Quantum dots bind nanosheet to promote nanomaterial stability and resist endotoxin-induced fibrosis and PM-induced pneumonia <i>Ecotoxicology and Environmental Safety</i> , 2022 , 234, 113420	7	O
4	Multifeature superposition analysis of the effects of microplastics on microbial communities in realistic environments <i>Environment International</i> , 2022 , 162, 107172	12.9	0
3	Multiple factors drive imbalance in the global microbial assemblage in soil <i>Science of the Total Environment</i> , 2022 , 154920	10.2	0
2	Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae <i>Journal of Hazardous Materials</i> , 2022 , 435, 128953	12.8	О
1	Reply to the Comment on Craphene oxide regulates the bacterial community and exhibits property changes in soilby C. Forstner, P. Wang, P. M. Kopittke and P. G. Dennis, RSC Adv., 2016, 6, DOI: 10.1039/C5RA26329H. <i>RSC Advances</i> , 2016 , 6, 53688-53689	3.7	