
Xiangang Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158, 2992-2998.	7.5	780
2	Health and Ecosystem Risks of Graphene. Chemical Reviews, 2013, 113, 3815-3835.	47.7	325
3	Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light. Applied Catalysis B: Environmental, 2021, 281, 119474.	20.2	208
4	Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environmental Science & Technology, 2015, 49, 10825-10833.	10.0	177
5	Interactions between graphene oxide and plant cells: Regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 2014, 80, 665-676.	10.3	160
6	Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environmental Science & Technology, 2017, 51, 7861-7871.	10.0	158
7	Systemic Stress and Recovery Patterns of Rice Roots in Response to Graphene Oxide Nanosheets. Environmental Science & Technology, 2017, 51, 2022-2030.	10.0	157
8	Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10492-10499.	7.1	152
9	Rice ingestion is a major pathway for human exposure to organophosphate flame retardants (OPFRs) in China. Journal of Hazardous Materials, 2016, 318, 686-693.	12.4	130
10	Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Scientific Reports, 2014, 4, 6122.	3.3	127
11	Graphene Oxide Quantum Dots Reduce Oxidative Stress and Inhibit Neurotoxicity In Vitro and In Vivo through Catalaseâ€Like Activity and Metabolic Regulation. Advanced Science, 2018, 5, 1700595.	11.2	127
12	Envelopment–Internalization Synergistic Effects and Metabolic Mechanisms of Graphene Oxide on Single-Cell <i>Chlorella vulgaris</i> Are Dependent on the Nanomaterial Particle Size. ACS Applied Materials & Interfaces, 2015, 7, 18104-18112.	8.0	123
13	Mitochondria-targeted TPP-MoS2 with dual enzyme activity provides efficient neuroprotection through M1/M2 microglial polarization in an Alzheimer's disease model. Biomaterials, 2020, 232, 119752.	11.4	123
14	Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology, 2016, 10, 1-11.	3.0	112
15	Ultra-trace graphene oxide in a water environment triggers Parkinson's disease-like symptoms and metabolic disturbance in zebrafish larvae. Biomaterials, 2016, 93, 83-94.	11.4	112
16	Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid. Environmental Science & Technology, 2015, 49, 10147-10154.	10.0	104
17	Covalently synthesized graphene oxide-aptamer nanosheets for efficient visible-light photocatalysis of nucleic acids and proteins of viruses. Carbon, 2012, 50, 2772-2781.	10.3	97
18	Knowledge gaps between nanotoxicological research and nanomaterial safety. Environment International, 2016, 94, 8-23.	10.0	95

#	Article	IF	CITATIONS
19	Graphene Oxide Quantum Dots as Novel Nanozymes for Alcohol Intoxication. ACS Applied Materials & Interfaces, 2017, 9, 12241-12252.	8.0	91
20	Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions. Nature Communications, 2021, 12, 493.	12.8	85
21	Exposure to PbSe Nanoparticles and Male Reproductive Damage in a Rat Model. Environmental Science & Technology, 2019, 53, 13408-13416.	10.0	80
22	Leaching of graphene oxide nanosheets in simulated soil and their influences on microbial communities. Journal of Hazardous Materials, 2021, 404, 124046.	12.4	78
23	Humic Acid Acts as a Natural Antidote of Graphene by Regulating Nanomaterial Translocation and Metabolic Fluxes <i>in Vivo</i> . Environmental Science & Technology, 2014, 48, 6919-6927.	10.0	75
24	Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide. Environmental Science & Technology, 2019, 53, 3773-3781.	10.0	73
25	Ambient Water and Visible-Light Irradiation Drive Changes in Graphene Morphology, Structure, Surface Chemistry, Aggregation, and Toxicity. Environmental Science & Technology, 2015, 49, 3410-3418.	10.0	72
26	Quantitative analyses of relationships between ecotoxicological effects and combined pollution. Science in China Series C: Life Sciences, 2004, 47, 332.	1.3	71
27	Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Science Advances, 2021, 7, .	10.3	71
28	Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Scientific Reports, 2014, 4, 3782.	3.3	70
29	Graphene oxide regulates the bacterial community and exhibits property changes in soil. RSC Advances, 2015, 5, 27009-27017.	3.6	64
30	Environmental Transformations and Algal Toxicity of Single-Layer Molybdenum Disulfide Regulated by Humic Acid. Environmental Science & Technology, 2018, 52, 2638-2648.	10.0	64
31	The Phases of WS ₂ Nanosheets Influence Uptake, Oxidative Stress, Lipid Peroxidation, Membrane Damage, and Metabolism in Algae. Environmental Science & Technology, 2018, 52, 13543-13552.	10.0	63
32	Solar-assisted fabrication of dimpled 2H-MoS2 membrane for highly efficient water desalination. Water Research, 2020, 170, 115367.	11.3	60
33	Photo-Oxidative Degradation Mitigated the Developmental Toxicity of Polyamide Microplastics to Zebrafish Larvae by Modulating Macrophage-Triggered Proinflammatory Responses and Apoptosis. Environmental Science & Technology, 2020, 54, 13888-13898.	10.0	59
34	l-Cysteine: A biocompatible, breathable and beneficial coating for graphene oxide. Biomaterials, 2015, 52, 301-311.	11.4	58
35	Super-performance photothermal conversion of 3D macrostructure graphene-CuFeSe2 aerogel contributes to durable and fast clean-up of highly viscous crude oil in seawater. Nano Energy, 2020, 70, 104511.	16.0	58
36	Dissolved Oxygen and Visible Light Irradiation Drive the Structural Alterations and Phytotoxicity Mitigation of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 7759-7769.	10.0	56

#	Article	IF	CITATIONS
37	Photoaging enhanced the adverse effects of polyamide microplastics on the growth, intestinal health, and lipid absorption in developing zebrafish. Environment International, 2022, 158, 106922.	10.0	53
38	Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. Journal of Hazardous Materials, 2012, 213-214, 387-392.	12.4	52
39	Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles. Environmental Science & Technology, 2018, 52, 9666-9676.	10.0	49
40	Study of the Persistence of the Phytotoxicity Induced by Graphene Oxide Quantum Dots and of the Specific Molecular Mechanisms by Integrating Omics and Regular Analyses. Environmental Science & Technology, 2019, 53, 3791-3801.	10.0	49
41	Nanocolloids in Natural Water: Isolation, Characterization, and Toxicity. Environmental Science & Technology, 2018, 52, 4850-4860.	10.0	48
42	Integrating multi-omics and regular analyses identifies the molecular responses of zebrafish brains to graphene oxide: Perspectives in environmental criteria. Ecotoxicology and Environmental Safety, 2019, 180, 269-279.	6.0	47
43	Persistence and Recovery of ZIF-8 and ZIF-67 Phytotoxicity. Environmental Science & Technology, 2021, 55, 15301-15312.	10.0	46
44	Biodegradation of graphene-based nanomaterials in blood plasma affects their biocompatibility, drug delivery, targeted organs and antitumor ability. Biomaterials, 2019, 202, 12-25.	11.4	45
45	Occurrence, accumulation, attenuation and priority of typical antibiotics in sediments based on long-term field and modeling studies. Journal of Hazardous Materials, 2012, 225-226, 91-98.	12.4	44
46	Graphene oxide nanosheets at trace concentrations elicit neurotoxicity in the offspring of zebrafish. Carbon, 2017, 117, 182-191.	10.3	44
47	Machine Learning Boosts the Design and Discovery of Nanomaterials. ACS Sustainable Chemistry and Engineering, 2021, 9, 6130-6147.	6.7	44
48	Simultaneous Analysis of Selected Typical Antibiotics in Manure by Microwave-Assisted Extraction and LC–MS n. Chromatographia, 2010, 71, 217-223.	1.3	43
49	ssDNA Aptamer-Based Column for Simultaneous Removal of Nanogram Per Liter Level of Illicit and Analgesic Pharmaceuticals in Drinking Water. Environmental Science & Technology, 2011, 45, 4890-4895.	10.0	42
50	Robust aptamer sol–gel solid phase microextraction of very polar adenosine from human plasma. Journal of Chromatography A, 2013, 1279, 7-12.	3.7	42
51	Influence of environmental factors on nanotoxicity and knowledge gaps thereof. NanoImpact, 2016, 2, 82-92.	4.5	41
52	Integrating metabolic analysis with biological endpoints provides insight into nanotoxicological mechanisms of graphene oxide: From effect onset to cessation. Carbon, 2016, 109, 65-73.	10.3	39
53	Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. ACS Applied Materials & Interfaces, 2016, 8, 33165-33174.	8.0	38
54	Integrating proteomics, metabolomics and typical analysis to investigate the uptake and oxidative stress of graphene oxide and polycyclic aromatic hydrocarbons. Environmental Science: Nano, 2018, 5, 115-129.	4.3	38

#	Article	IF	CITATIONS
55	Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. Ecotoxicology and Environmental Safety, 2019, 184, 109602.	6.0	37
56	Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures. Critical Reviews in Environmental Science and Technology, 2019, 49, 2314-2358.	12.8	37
57	Lake Chemodiversity Driven by Natural and Anthropogenic Factors. Environmental Science & Technology, 2022, 56, 5910-5919.	10.0	37
58	A 2D-2D heterojunction Bi2WO6/WS2-x as a broad-spectrum bactericide: Sulfur vacancies mediate the interface interactions between biology and nanomaterials. Biomaterials, 2020, 243, 119937.	11.4	36
59	Biotransformation of graphene oxide nanosheets in blood plasma affects their interactions with cells. Environmental Science: Nano, 2017, 4, 1569-1578.	4.3	35
60	Untargeted Metabolic Pathway Analysis as an Effective Strategy to Connect Various Nanoparticle Properties to Nanoparticle-Induced Ecotoxicity. Environmental Science & Technology, 2020, 54, 3395-3406.	10.0	34
61	Characterization of the effects of trace concentrations of graphene oxide on zebrafish larvae through proteomic and standard methods. Ecotoxicology and Environmental Safety, 2018, 159, 221-231.	6.0	32
62	Graphene oxide quantum dots stimulate indigenous bacteria to remove oil contamination. Journal of Hazardous Materials, 2019, 366, 694-702.	12.4	32
63	Influence of Size and Phase on the Biodegradation, Excretion, and Phytotoxicity Persistence of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2020, 54, 12295-12306.	10.0	32
64	Characterization of Biological Secretions Binding to Graphene Oxide in Water and the Specific Toxicological Mechanisms. Environmental Science & Technology, 2016, 50, 8530-8537.	10.0	31
65	Aqueously Released Graphene Oxide Embedded in Epoxy Resin Exhibits Different Characteristics and Phytotoxicity of <i>Chlorella vulgaris</i> from the Pristine Form. Environmental Science & Technology, 2017, 51, 5425-5433.	10.0	30
66	Emerging investigator series: design of hydrogel nanocomposites for the detection and removal of pollutants: from nanosheets, network structures, and biocompatibility to machine-learning-assisted design. Environmental Science: Nano, 2018, 5, 2216-2240.	4.3	30
67	Fabrication of 1T-MoS2 nanosheets and the high-efficiency removal of toxic metals in aquatic systems: Performance and mechanisms. Chemical Engineering Journal, 2020, 386, 123996.	12.7	30
68	Nanocolloids, but Not Humic Acids, Augment the Phytotoxicity of Single-Layer Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2021, 55, 1122-1133.	10.0	30
69	Effects of the size and oxidation of graphene oxide on crop quality and specific molecular pathways. Carbon, 2018, 140, 352-361.	10.3	29
70	Natural Nanocolloids Mediate the Phytotoxicity of Graphene Oxide. Environmental Science & Technology, 2020, 54, 4865-4875.	10.0	28
71	Pathogen Receptor Membrane-Coating Facet Structures Boost Nanomaterial Immune Escape and Antibacterial Performance. Nano Letters, 2021, 21, 9966-9975.	9.1	28
72	Strategies and knowledge gaps for improving nanomaterial biocompatibility. Environment International, 2017, 102, 177-189.	10.0	27

#	Article	IF	CITATIONS
73	Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. Environmental Science & Technology, 2019, 53, 13938-13948.	10.0	26
74	Integrating metabolomics and physiological analysis to investigate the toxicological mechanisms of sewage sludge-derived biochars to wheat. Ecotoxicology and Environmental Safety, 2019, 185, 109664.	6.0	26
75	Predicting nanotoxicity by an integrated machine learning and metabolomics approach. Environmental Pollution, 2020, 267, 115434.	7.5	26
76	Comparisons of Microwave-Assisted Extraction, Simultaneous Distillation-Solvent Extraction, Soxhlet Extraction and Ultrasound Probe for Polycyclic Musks in Sediments: Recovery, Repeatability, Matrix Effects and Bioavailability. Chromatographia, 2011, 74, 489-495.	1.3	25
77	Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA—A Review. Nanomaterials, 2021, 11, 2889.	4.1	25
78	Graphene oxide enters the rice roots and disturbs the endophytic bacterial communities. Ecotoxicology and Environmental Safety, 2020, 192, 110304.	6.0	24
79	Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials, 2021, 266, 120469.	11.4	24
80	Impact of algal extracellular polymeric substances on the environmental fate and risk of molybdenum disulfide in aqueous media. Water Research, 2021, 205, 117708.	11.3	24
81	Widely distributed nanocolloids in water regulate the fate and risk of graphene oxide. Water Research, 2019, 165, 114987.	11.3	21
82	WS ₂ Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. Environmental Science & Technology, 2020, 54, 1698-1709.	10.0	21
83	Polymeric nanoparticle–aptamer bioconjugates can diminish the toxicity of mercury in vivo. Toxicology Letters, 2012, 208, 69-74.	0.8	20
84	Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. Ecotoxicology and Environmental Safety, 2021, 208, 111487.	6.0	19
85	Root exudates as natural ligands that alter the properties of graphene oxide and environmental implications thereof. RSC Advances, 2015, 5, 17615-17622.	3.6	18
86	Environmental decomposition and remodeled phytotoxicity of framework-based nanomaterials. Journal of Hazardous Materials, 2022, 422, 126846.	12.4	18
87	Characterization and toxicity of nanoscale fragments in wastewater treatment plant effluent. Science of the Total Environment, 2018, 626, 1332-1341.	8.0	17
88	Machine learning may accelerate the recognition and control of microplastic pollution: Future prospects. Journal of Hazardous Materials, 2022, 432, 128730.	12.4	17
89	Separation and analysis of carbon nanomaterials in complex matrix. TrAC - Trends in Analytical Chemistry, 2016, 80, 416-428.	11.4	16
90	Formation of S defects in MoS ₂ -coated wood for high-efficiency seawater desalination. Environmental Science: Nano, 2021, 8, 2069-2080.	4.3	16

#	Article	IF	CITATIONS
91	The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology, 2020, 14, 1137-1155.	3.0	14
92	Graphene oxide nanosheets mitigate the developmental toxicity of TDCIPP in zebrafish via activating the mitochondrial respiratory chain and energy metabolism. Science of the Total Environment, 2020, 727, 138486.	8.0	14
93	Surface atomic arrangement of nanomaterials affects nanotoxicity. Nanotoxicology, 2021, 15, 114-130.	3.0	14
94	Identifying the Phytotoxicity and Defense Mechanisms Associated with Graphene-Based Nanomaterials by Integrating Multiomics and Regular Analysis. Environmental Science & Technology, 2021, 55, 9938-9948.	10.0	14
95	Nanoscale colloids induce metabolic disturbance of zebrafish at environmentally relevant concentrations. Environmental Science: Nano, 2019, 6, 1562-1575.	4.3	13
96	Screening of safe soybean cultivars for cadmium contaminated fields. Scientific Reports, 2020, 10, 12965.	3.3	13
97	Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS2. Journal of Hazardous Materials, 2022, 429, 128361.	12.4	13
98	Green Synthesis of Low-Toxicity Graphene-Fulvic Acid with an Open Band Gap Enhances Demethylation of Methylmercury. ACS Applied Materials & amp; Interfaces, 2014, 6, 9220-9227.	8.0	12
99	Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology, 2017, 11, 1-13.	3.0	12
100	Stress Response and Nutrient Homeostasis in Lettuce (<i>Lactuca sativa</i>) Exposed to Graphene Quantum Dots Are Modulated by Particle Surface Functionalization. Advanced Biology, 2021, 5, e2000778.	2.5	12
101	Facile Bioself-Assembled Crystals in Plants Promote Photosynthesis and Salt Stress Resistance. ACS Nano, 2021, 15, 5165-5177.	14.6	11
102	Adsorption behavior of Sudan I-IV on a coastal soil and their forecasted biogeochemical cycles. Environmental Science and Pollution Research, 2017, 24, 10749-10758.	5.3	10
103	Vegetation alleviate the negative effects of graphene oxide on benzo[a]pyrene dissipation and the associated soil bacterial community. Chemosphere, 2020, 253, 126725.	8.2	10
104	Integrating omics and traditional analyses to profile the synergistic toxicity of graphene oxide and triphenyl phosphate. Environmental Pollution, 2020, 263, 114473.	7.5	10
105	The Forms, Distribution, and Risk Assessment of Sulfonamide Antibiotics in the Manure–Soil–Vegetable System of Feedlot Livestock. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 790-797.	2.7	9
106	Marine Colloids Promote the Adaptation of Diatoms to Nitrate Contamination by Directional Electron Transfer. Environmental Science & Technology, 2022, 56, 5694-5705.	10.0	9
107	Mitigation Effects and Associated Mechanisms of Environmentally Relevant Thiols on the Phytotoxicity of Molybdenum Disulfide Nanosheets. Environmental Science & Technology, 2022, 56, 9556-9568.	10.0	9
108	Native nanodiscs from blood inhibit pulmonary fibrosis. Biomaterials, 2019, 192, 51-61.	11.4	8

#	Article	IF	CITATIONS
109	Anthropogenic impacts on the biodiversity and anti-interference ability of microbial communities in lakes. Science of the Total Environment, 2022, 820, 153264.	8.0	8
110	Humic acids alleviate the toxicity of reduced graphene oxide modified by nanosized palladium in microalgae. Ecotoxicology and Environmental Safety, 2022, 241, 113794.	6.0	8
111	Screening Small Metabolites from Cells as Multifunctional Coatings Simultaneously Improves Nanomaterial Biocompatibility and Functionality. Advanced Science, 2018, 5, 1800341.	11.2	7
112	Derived regional soil-environmental quality criteria of metals based on Anhui soil-crop systems at the regulated level. Science of the Total Environment, 2022, 825, 154060.	8.0	7
113	Sub-chronic exposure to Tris(1,3-dichloro-2-propyl) phosphate induces sex-dependent hepatotoxicity in rats. Environmental Science and Pollution Research, 2019, 26, 33351-33362.	5.3	6
114	Metal status in soils within a developing education park: Potential risk of land development. Land Degradation and Development, 2020, 31, 430-438.	3.9	6
115	Multifeature superposition analysis of the effects of microplastics on microbial communities in realistic environments. Environment International, 2022, 162, 107172.	10.0	6
116	Response of soil enzymes, functional bacterial groups, and microbial communities exposed to sudan I-IV. Ecotoxicology and Environmental Safety, 2018, 166, 328-335.	6.0	5
117	Conversion relationships between environmental quality criteria of water/air and soil. Science China Earth Sciences, 2018, 61, 1781-1791.	5.2	5
118	Multiple factors drive imbalance in the global microbial assemblage in soil. Science of the Total Environment, 2022, 831, 154920.	8.0	5
119	Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. Journal of Hazardous Materials, 2022, 435, 128953.	12.4	5
120	Soil bacterial communities respond differently to graphene oxide and reduced graphene oxide after 90 days of exposure. Soil Ecology Letters, 2020, 2, 176-179.	4.5	4
121	Magnetic Field-Guided MoS ₂ /WS ₂ Heterolayered Nanofilm Regulates Cell Behavior and Gene Expression. ACS Applied Nano Materials, 2021, 4, 10828-10835.	5.0	4
122	Nanocolloids in drinking water increase the risk of obesity in mice by modulating gut microbes. Environment International, 2021, 146, 106302.	10.0	3
123	The health impact of environmental pollution. Ecotoxicology and Environmental Safety, 2021, 208, 111667.	6.0	2
124	Nanoparticles with Multiple Enzymatic Activities Purified from Groundwater Efficiently Cross the Blood–Brain Barrier, Improve Memory, and Provide Neuroprotection. ACS Applied Bio Materials, 2021, 4, 5503-5519.	4.6	2
125	Quantum dots bind nanosheet to promote nanomaterial stability and resist endotoxin-induced fibrosis and PM2.5-induced pneumonia. Ecotoxicology and Environmental Safety, 2022, 234, 113420.	6.0	2
126	Adsorption-desorption of hydrophilic contaminants rhodamine B with/without Cd2+ on a coastal soil: implications for mariculture and seafood safety. Environmental Science and Pollution Research, 2018, 25, 34636-34643.	5.3	1

#	Article	IF	CITATIONS
127	Bioavailability and toxicity variation of benzo(a)pyrene in three soil–wheat systems: Indicators of soil quality. Land Degradation and Development, 2021, 32, 3847-3855.	3.9	1
128	Bionanoscale Recognition Underlies Cell Fate and Therapy. Advanced Healthcare Materials, 2021, 10, 2101260.	7.6	1
129	Relationships between airborne microbial community diversity, heating supply patterns and particulate matter properties. Journal of Environmental Chemical Engineering, 2022, 10, 107309.	6.7	1
130	Reply to the †Comment on "Graphene oxide regulates the bacterial community and exhibits property changes in soilâ€â€™ by C. Forstner, P. Wang, P. M. Kopittke and P. G. Dennis, RSC Adv., 2016, 6 , DOI:	3.6	0

130 changes in soilä€â€™ by C. Forstner, P. Wang, P. M. Kopittke at 10.1039/C5RA26329H. RSC Advances, 2016, 6, 53688-53689.