
Tuhin Subhra Santra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications. Bioactive Materials, 2022, 9, 566-589.	8.6	78
2	Mechanoporation: Toward Single Cell Approaches. , 2022, , 31-59.		0
3	Light-Induced Cellular Delivery and Analysis. , 2022, , 3-30.		1
4	Single-Cell Manipulation. , 2022, , 111-136.		0
5	Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials, 2022, 280, 121247.	5.7	35
6	Microfluidic mechanoporation for cellular delivery and analysis. Materials Today Bio, 2022, 13, 100193.	2.6	18
7	Microfluidic platforms for single neuron analysis. Materials Today Bio, 2022, 13, 100222.	2.6	11
8	Effect of size and interparticle distance of nanoparticles on the formation of bubbles induced by nanosecond laser. Surfaces and Interfaces, 2022, 30, 101820.	1.5	3
9	Controlled and localized drug delivery using Titania nanotubes. Materials Today Communications, 2022, 32, 103843.	0.9	3
10	Single-cell patterning: a new frontier in bioengineering. Materials Today Chemistry, 2022, 26, 101021.	1.7	5
11	Gold-Polystyrene Core-Shell Hybrid Nanoparticles Mediated Highly Efficient Intracellular Delivery Using Light Pulses. , 2021, , .		0
12	Electrolysis of selectively patterned <i>Vorticella</i> with pneumatic microchambers and electrodes. Mechanical Engineering Journal, 2021, 8, 20-00254-20-00254.	0.2	0
13	Fabrication of TiO ₂ microspikes for highly efficient intracellular delivery by pulse laser-assisted photoporation. RSC Advances, 2021, 11, 9336-9348.	1.7	18
14	Nanomaterials: An Introduction. Springer Series in Biomaterials Science and Engineering, 2021, , 1-27.	0.7	10
15	Light-Induced Cellular Delivery and Analysis. , 2021, , 1-29.		2
16	Pulsed laser assisted high-throughput intracellular delivery in hanging drop based three dimensional cancer spheroids. Analyst, The, 2021, 146, 4756-4766.	1.7	22
17	Hydrogels: Biomaterials for Sustained and Localized Drug Delivery. Springer Series in Biomaterials Science and Engineering, 2021, , 211-252.	0.7	0
18	Can titanium oxide nanotubes facilitate intracellular delivery by laser-assisted photoporation?. Applied Surface Science, 2021, 543, 148815.	3.1	14

TUHIN SUBHRA SANTRA

#	Article	IF	CITATIONS
19	A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells, 2021, 10, 577.	1.8	33
20	Microfluidic Based Physical Approaches towards Single-Cell Intracellular Delivery and Analysis. Micromachines, 2021, 12, 631.	1.4	13
21	Additive manufacturing of Mg alloys for biomedical applications: Current status and challenges. Current Opinion in Biomedical Engineering, 2021, 18, 100276.	1.8	17
22	Editorial for the Special Issue on Micro/Nanofluidic Devices for Single Cell Analysis, Volume II. Micromachines, 2021, 12, 875.	1.4	2
23	Electrochemical fabrication of TiO2 micro-flowers for an efficient intracellular delivery using nanosecond light pulse. Materials Chemistry and Physics, 2021, 267, 124604.	2.0	16
24	Metallic Nanoparticles for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2021, , 29-81.	0.7	3
25	Microvalve actuated by <i>Vorticella</i> : self-oscillating valve and improvement measures to calcium-responsive valve. Mechanical Engineering Journal, 2021, 8, 21-00199-21-00199.	0.2	Ο
26	Single-Cell Analysis. Cells, 2020, 9, 1993.	1.8	10
27	Nano-localized single-cell nano-electroporation. Lab on A Chip, 2020, 20, 4194-4204.	3.1	30
28	Infrared Pulse Laser-Activated Highly Efficient Intracellular Delivery Using Titanium Microdish Device. ACS Biomaterials Science and Engineering, 2020, 6, 5645-5652.	2.6	33
29	Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale, 2020, 12, 12057-12067.	2.8	49
30	Physical approaches for drug delivery. , 2020, , 161-190.		18
31	A Single-Neuron: Current Trends and Future Prospects. Cells, 2020, 9, 1528.	1.8	28
32	Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. Materials Today Communications, 2020, 25, 101403.	0.9	10
33	Scalable Parallel Manipulation of Single Cells Using Micronozzle Array Integrated with Bidirectional Electrokinetic Pumps. Micromachines, 2020, 11, 442.	1.4	6
34	Single-Cell Manipulation. , 2020, , 1-26.		1
35	Intracellular Delivery using Anisotropic Gold Nanocrystals Synthesized by Microfluidic Device. , 2020, , .		1
36	Nanosecond Pulsed Laser Activated Massively Parallel Single-cell Intracellular Delivery Using Ti Micro-Dish. , 2020, , .		0

TUHIN SUBHRA SANTRA

#	Article	IF	CITATIONS
37	Liposomal Cytarabine as Cancer Therapy: From Chemistry to Medicine. Biomolecules, 2019, 9, 773.	1.8	52
38	Nanosecond Laser Irradiation on Cells Using Titanium Thin Film for Massively Parallel Cell Intranuclear Delivery. , 2019, , .		0
39	Single-cell electroporation: current trends, applications and future prospects. Journal of Micromechanics and Microengineering, 2018, 28, 123002.	1.5	54
40	Mechanoporation: Toward Single Cell Approaches. , 2018, , 1-29.		5
41	Current Trends of Microfluidic Single-Cell Technologies. International Journal of Molecular Sciences, 2018, 19, 3143.	1.8	63
42	Uniform Transfection: Shock Wave Generation in Laser Ablation and Microcontact Printing. , 2018, , .		2
43	Construction and evaluation of Irradiation Optical System for the Basis of Massively Parallel Intranuclear Delivery System. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2018, 2018, 2A1-L09.	0.0	Ο
44	Oxygenated graphene quantum dots (CQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Advances, 2017, 7, 53822-53829.	1.7	43
45	Optical transfection system using pulse laser for massively parallel localized intracellular delivery. , 2017, , .		1
46	Regioselective Cell Poration Using Microbubble Generated by Pulsed Light. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2017, 2017, 2A2-Q11.	0.0	0
47	Laser-Induced Plasma Generation Device for Massively Parallel Delivery to Cell Nuclei. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2017, 2017.8, PN-31.	0.0	0
48	Microfluidic Devices in Advanced Caenorhabditis elegans Research. Molecules, 2016, 21, 1006.	1.7	25
49	Photothermal nanoblades for delivery of large-sized cargo into mammalian cells at high throughput. , 2016, , .		Ο
50	Electroporation for Single-Cell Analysis. Series in Bioengineering, 2016, , 55-83.	0.3	8
51	Microinjection for Single-Cell Analysis. Series in Bioengineering, 2016, , 85-129.	0.3	6
52	Dielectric passivation layer as a substratum on localized single-cell electroporation. RSC Advances, 2016, 6, 10979-10986.	1.7	24
53	Single Cell Analysis in Biotechnology and Systems Biology. , 2016, , .		2
54	Micro/Nanofluidic Devices for Single Cell Analysis. Micromachines, 2014, 5, 154-157.	1.4	17

#	Article	IF	CITATIONS
55	Impact of pulse duration on localized single-cell nano-electroporation. Analyst, The, 2014, 139, 6249-6258.	1.7	32
56	Nanoelectroporation and controllable intracellular delivery into localized single cell with high transfection and cell viability. , 2014, , .		1
57	Nanolocalized single cell membrane nanoelectroporation. , 2014, , .		1
58	Nanolocalized Single-Cell-Membrane Nanoelectroporation: For higher efficiency with high cell viability IEEE Nanotechnology Magazine, 2014, 8, 30-34.	0.9	14
59	Biosynthesis of Silver and Gold Nanoparticles for Potential Biomedical Applications—A Brief Review. Journal of Nanopharmaceutics and Drug Delivery, 2014, 2, 249-265.	0.3	16
60	Nanofocused electric field for localized single cell nanoelectroporation with membrane reversibility. , 2013, , .		1
61	Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation. Applied Physics Letters, 2013, 103, .	1.5	32
62	Recent Trends on Micro/Nanofluidic Single Cell Electroporation. Micromachines, 2013, 4, 333-356.	1.4	61
63	Electroporation Based Drug Delivery and Its Applications. , 2013, , .		9
64	Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip. Biomedical Microdevices, 2012, 14, 811-817.	1.4	33
65	Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD. AIP Advances, 2012, 2, 022132.	0.6	26
66	Biomedical Applications of Diamond-Like Nanocomposite Thin Films. Science of Advanced Materials, 2012, 4, 110-113.	0.1	11
67	Structural and tribological properties of diamond-like nanocomposite thin films. Surface and Coatings Technology, 2011, 206, 228-233.	2.2	24
68	Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2010, 107, .	1.1	50