Ueli Heiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894597/publications.pdf

Version: 2024-02-01

200 papers 11,453 citations

46918 47 h-index 103 g-index

213 all docs

213 docs citations

times ranked

213

8250 citing authors

#	Article	IF	CITATIONS
1	CO ₂ -Activation by size-selected tantalum cluster cations (Ta _{1–16} ⁺): thermalization governing reaction selectivity. Physical Chemistry Chemical Physics, 2022, 24, 2623-2629.	1.3	12
2	Surface second harmonic generation spectra of titania coated Au NPs. Applied Surface Science, 2022, 581, 152381.	3.1	2
3	Tunable induced circular dichroism in gels. Chirality, 2022, 34, 550-558.	1.3	4
4	Towards Sizeâ€Controlled Deposition of Palladium Nanoparticles from Polyoxometalate Precursors: An Electrochemical Scanning Tunneling Microscopy Study. ChemElectroChem, 2021, 8, 1280-1288.	1.7	9
5	Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. Journal of Physical Chemistry A, 2021, 125, 1919-1926.	1.1	3
6	Atomic Undercoordination in Ag Islands on Ru(0001) Grown via Size-Selected Cluster Deposition: An Experimental and Theoretical High-Resolution Core-Level Photoemission Study. Journal of Physical Chemistry C, 2021, 125, 9556-9563.	1.5	4
7	Ethylene hydrogenation on supported Pd nanoparticles: Influence of support on catalyst activity and deactivation. Journal of Catalysis, 2021, 397, 90-97.	3.1	4
8	Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. Journal of Physical Chemistry A, 2021, 125, 5289-5302.	1.1	9
9	Cluster Catalysis with Lattice Oxygen: Tracing Oxygen Transport from a Magnetite (001) Support onto Small Pt Clusters. ACS Catalysis, 2021, 11, 9519-9529.	5.5	14
10	Nanotuning via Local Work Function Control: Ethylene Hydrogenation on Supported Pt Nanoclusters. ACS Catalysis, 2020, 10, 1799-1809.	5. 5	6
11	Understanding laser desorption with circularly polarized light. Chirality, 2020, 32, 1341-1353.	1.3	1
12	Carbide Dihydrides: Carbonaceous Species Identified in Ta ₄ ⁺ â€Mediated Methane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 23631-23635.	7.2	10
13	Nickel clusters on TiO ₂ (110): thermal chemistry and photocatalytic hydrogen evolution of methanol. Catalysis Science and Technology, 2020, 10, 7630-7639.	2.1	7
14	Nonvolatile Memristive Switching in Self-assembled Nanoparticle Dimers. ACS Applied Electronic Materials, 2020, 2, 1099-1105.	2.0	3
15	Surface Species in Photocatalytic Methanol Reforming on Pt/TiO ₂ (110): Learning from Surface Science Experiments for Catalytically Relevant Conditions. ACS Catalysis, 2020, 10, 4080-4091.	5.5	38
16	Regulating Photochemical Selectivity with Temperature: Isobutanol on TiO ₂ (110). Journal of the American Chemical Society, 2020, 142, 13072-13080.	6.6	12
17	Origin of Poisoning in Methanol Photoreforming on TiO ₂ (110): The Importance of Thermal Back-Reaction Steps in Photocatalysis. ACS Catalysis, 2020, 10, 7747-7752.	5.5	11
18	Catalytic Non-Oxidative Coupling of Methane on Ta ₈ O ₂ ⁺ . Journal of the American Chemical Society, 2020, 142, 5862-5869.	6.6	49

#	Article	IF	Citations
19	Carbidâ€Dihydride: kohlenstoffhaltige Spezies identifiziert in der Ta 4 + â€vermittelten Methandehydrierung. Angewandte Chemie, 2020, 132, 23838-23842.	1.6	2
20	Enantiospecific Desorption Triggered by Circularly Polarized Light. Angewandte Chemie - International Edition, 2019, 58, 15685-15689.	7.2	10
21	Reaktionswege in der photokatalytischen Umsetzung tertiÃ r er Alkohole auf Rutilâ€TiO 2 (110). Angewandte Chemie, 2019, 131, 14393-14397.	1.6	1
22	Reactions in the Photocatalytic Conversion of Tertiary Alcohols on Rutile TiO 2 (110). Angewandte Chemie - International Edition, 2019, 58, 14255-14259.	7.2	14
23	Influence of Local Defects on the Dynamics of O–H Bond Breaking and Formation on a Magnetite Surface. Journal of Physical Chemistry C, 2019, 123, 19742-19747.	1.5	11
24	Introducing catalysis in photocatalysis: What can be understood from surface science studies of alcohol photoreforming on TiO ₂ . Journal of Physics Condensed Matter, 2019, 31, 473002.	0.7	19
25	Innentitelbild: Enantiospecific Desorption Triggered by Circularly Polarized Light (Angew. Chem.) Tj ETQq1 1 0.784	·314 rgBT	/8verlock 1
26	Thermal C–O coupling reactions of Ta methylene clusters [Ta _n CH ₂] ⁺ (<i>n</i> = 1, 4) with O ₂ . Physical Chemistry Chemical Physics, 2019, 21, 20743-20749.	1.3	8
27	Why co-catalyst-loaded rutile facilitates photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 1491-1496.	1.3	23
28	Tunable Induced Circular Dichroism in Thin Organic Films. Journal of Physical Chemistry C, 2019, 123, 9255-9261.	1.5	5
29	Ensemble Effects in the Temperatureâ€Dependent Photoluminescence of Silicon Nanocrystals. Chemistry - A European Journal, 2019, 25, 3061-3067.	1.7	10
30	Controlling Hydrogenation Selectivity by Size: 3-Hexyne on Supported Pt Clusters. Journal of Physical Chemistry C, 2019, 123, 5518-5524.	1.5	4
31	Enantiospecific Desorption Triggered by Circularly Polarized Light. Angewandte Chemie, 2019, 131, 15832-15836.	1.6	4
32	Hydrogenation of small hydrocarbons on MgO supported Pd nanoparticles: The A-E-model expanded. Journal of Chemical Physics, 2019, 151, 244304.	1.2	2
33	In situ Secondâ€Harmonic Generation Circular Dichroism with Submonolayer Sensitivity. ChemPhysChem, 2019, 20, 134-141.	1.0	10
34	Circular Dichroism and Isotropy – Polarity Reversal of Ellipticity in Molecular Films of 1,1'â€Biâ€2â€Naphtol. ChemPhysChem, 2019, 20, 62-69.	1.0	17
35	Enantio-enrichment of Racemic Films Using Circularly Polarized Femtosecond Pulses. , 2019, , .		O
36	Photocatalytic selectivity switch to C–C scission: α-methyl ejection oftert-butanol on TiO2(110). Physical Chemistry Chemical Physics, 2018, 20, 7105-7111.	1.3	10

#	Article	IF	Citations
37	Surface Chemistry of 1- and 3-Hexyne on Pt(111): Desorption, Decomposition, and Dehydrocyclization. Journal of Physical Chemistry C, 2018, 122, 4428-4436.	1.5	3
38	Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene. New Journal of Chemistry, 2018, 42, 3035-3041.	1.4	12
39	Electrochemical stability of subnanometer Pt clusters. Electrochimica Acta, 2018, 277, 211-217.	2.6	18
40	An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics. Review of Scientific Instruments, 2018, 89, 023104.	0.6	6
41	Device-Compatible Chiroptical Surfaces through Self-Assembly of Enantiopure Allenes. Langmuir, 2018, 34, 4548-4553.	1.6	18
42	Highâ€Resolution Absorption and Electronic Circular Dichroism Spectra of (⟨i⟩R⟨/i⟩)â€(+)â€1â€Phenylethanol. Confident Interpretation Based on the Synergy between Experiments and Computations. ChemPhysChem, 2018, 19, 715-723.	1.0	11
43	Communication: Water activation and splitting by single metal-atom anions. Journal of Chemical Physics, 2018, 149, 221101.	1.2	22
44	Electrodeposition of Pt and Gd from the Same Ionic Liquid. ECS Transactions, 2018, 86, 475-487.	0.3	4
45	Chemistry of Methanol and Ethanol on Ozone-Prepared α-Fe ₂ O ₃ (0001). Journal of Physical Chemistry C, 2018, 122, 25404-25410.	1.5	5
46	Thermal Control of Selectivity in Photocatalytic, Water-Free Alcohol Photoreforming. ACS Catalysis, 2018, 8, 11076-11084.	5 . 5	29
47	Thermal Dehydrogenation of Methane Enhanced by $\hat{1}\frac{1}{4}$ 2-Oxo Ligands in Tantalum Cluster Cations [TaxO]+, x = 4, 5. Journal of Physical Chemistry C, 2018, 122, 25628-25637.	1.5	16
48	A Microscopy Approach to Investigating the Energetics of Small Supported Metal Clusters. Journal of Physical Chemistry C, 2018, 122, 22569-22576.	1.5	8
49	Chirality transfer from organic ligands to silver nanostructures <i>via</i> chiral polarisation of the electric field. Physical Chemistry Chemical Physics, 2018, 20, 20347-20351.	1.3	18
50	Consecutive reactions of small, free tantalum clusters with dioxygen controlled by relaxation dynamics. Physical Chemistry Chemical Physics, 2017, 19, 5985-5993.	1.3	11
51	From oxidative degradation to direct oxidation: size regimes in the consecutive reaction of cationic tantalum clusters with dioxygen. Physical Chemistry Chemical Physics, 2017, 19, 10863-10869.	1.3	10
52	Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications. ACS Catalysis, 2017, 7, 4152-4162.	5.5	41
53	Surface Oxidation of Supported, Size-Selected Silver Clusters. Journal of Cluster Science, 2017, 28, 2401-2408.	1.7	2
54	Doping-Dependent Adsorption and Photon-Stimulated Desorption of CO on GaN(0001). Journal of Physical Chemistry C, 2017, 121, 8473-8479.	1.5	12

#	Article	IF	Citations
55	Effect of Thiol-Ligands on the Optical Response of Supported Silver Clusters. Journal of Physical Chemistry C, 2017, 121, 9331-9336.	1.5	16
56	Au(111)-supported Platinum Nanoparticles: Ripening and Activity. MRS Advances, 2017, 2, 439-444.	0.5	1
57	Ethene to Graphene: Surface Catalyzed Chemical Pathways, Intermediates, and Assembly. Journal of Physical Chemistry C, 2017, 121, 9413-9423.	1.5	29
58	Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2Â ⁻ O1). Journal of Chemical Physics, 2017, 147, 124704.	1.2	2
59	Can Support Acidity Predict Sub-Nanometer Catalyst Activity Trends?. ACS Catalysis, 2017, 7, 6738-6744.	5.5	24
60	Plasmonic support-mediated activation of $1\mathrm{nm}$ platinum clusters for catalysis. Physical Chemistry Chemical Physics, 2017, 19, 30570-30577.	1.3	14
61	Chiroptical inversion for isolated vibronic transitions of supersonic beam-cooled molecules. Physical Chemistry Chemical Physics, 2017, 19, 21297-21303.	1.3	10
62	Anhydrous Ethanol Dehydrogenation on Metal–Organic Chemical Vapor Deposition Grown GaN(0001). Journal of Physical Chemistry C, 2017, 121, 16393-16398.	1.5	9
63	High stability of thiol-protected colloidal platinum nanoparticles with reduced ligand coverages in the hydrogenation of 3-hexyne. Catalysis Communications, 2017, 100, 85-88.	1.6	9
64	Surface Oxidation of Supported, Size-Selected Silver Clusters. Journal of Cluster Science, 2017, 28, 3185-3192.	1.7	8
65	Electrodeposition of Pt - Rare Earth Alloys as ORR Catalysts for Fuel Cells. ECS Transactions, 2016, 75, 323-332.	0.3	9
66	Massâ€Selected Circular Dichroism of Supersonicâ€Beamâ€Cooled [D ₄]â€(<i>R</i>)â€(+)â€3â€Methylcyclopentanone. ChemPhysChem, 2016, 17, 4052-4058.	1.0	12
67	Suppression of Deactivation Processes in Photocatalytic Reduction of CO ₂ Using Pulsed Light. ChemCatChem, 2016, 8, 2688-2695.	1.8	10
68	Controlling Ethylene Hydrogenation Reactivity on Pt ₁₃ Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie - International Edition, 2016, 55, 8953-8957.	7.2	32
69	Vom Großen aufs Kleine schließen. Nachrichten Aus Der Chemie, 2016, 64, 955-959.	0.0	O
70	Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces. Nature Communications, 2016, 7, 10700.	5.8	40
71	Controlling Ethylene Hydrogenation Reactivity on Pt ₁₃ Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie, 2016, 128, 9099-9103.	1.6	1
72	H ₂ /D ₂ exchange reaction on mono-disperse Pt clusters: enhanced activity from minute O ₂ concentrations. Catalysis Science and Technology, 2016, 6, 6893-6900.	2.1	9

#	Article	IF	CITATIONS
73	Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials. Surface Science, 2016, 652, 7-19.	0.8	36
74	Isomer-Selective Detection of Aromatic Molecules in Temperature-Programmed Desorption for Model Catalysis. Analytical Chemistry, 2016, 88, 5392-5397.	3.2	4
75	Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability. Journal of Colloid and Interface Science, 2016, 478, 72-80.	5.0	17
76	Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nature Communications, 2016, 7, 10389.	5.8	115
77	Optical and morphological properties of thin films of bis-pyrenyl π-conjugated molecules. Physical Chemistry Chemical Physics, 2016, 18, 5299-5305.	1.3	6
78	Two reaction regimes in the oxidation of larger cationic tantalum clusters (Ta _n ⁺ , n = 13–40) under multi-collision conditions. Physical Chemistry Chemical Physics, 2016, 18, 8115-8119.	1.3	14
79	Ethylene hydrogenation on supported Ni, Pd and Pt nanoparticles: Catalyst activity, deactivation and the d-band model. Journal of Catalysis, 2016, 333, 51-58.	3.1	62
80	Ostwald ripening of supported Pt nanoclusters with initial size-selected distributions. Chemical Physics Letters, 2015, 631-632, 21-25.	1.2	18
81	Unraveling Side Reactions in the Photocatalytic Reduction of CO ₂ : Evidence for Lightâ€Induced Deactivation Processes in Homogeneous Photocatalysis. ChemCatChem, 2015, 7, 690-697.	1.8	30
82	Plasmons in supported size-selected silver nanoclusters. Physical Chemistry Chemical Physics, 2015, 17, 17541-17544.	1.3	47
83	Atomic Structure Control of Silica Thin Films on Pt(111). Journal of Physical Chemistry C, 2015, 119, 13665-13669.	1.5	16
84	Ethanol photocatalysis on rutile TiO ₂ (110): the role of defects and water. Physical Chemistry Chemical Physics, 2015, 17, 22809-22814.	1.3	43
85	Using controlled ion extraction to combine a ring electrode trap with a reflectron time-of-flight mass spectrometer. International Journal of Mass Spectrometry, 2015, 387, 8-15.	0.7	12
86	Size-dependent gas phase reactivity of tantalum cluster cations with small alcohols. International Journal of Mass Spectrometry, 2015, 375, 9-13.	0.7	16
87	Laser Mass Spectrometry with Circularly Polarized Light: Circular Dichroism of Cold Molecules in a Supersonic Gas Beam. ChemPhysChem, 2014, 15, 2762-2767.	1.0	17
88	Very small "window of opportunity―for generating CO oxidation-active Au _n on TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 6735-6742.	1.3	17
89	Catalytic Dehydration of 2-Propanol by Size-Selected (WO3)n and (MoO3)n Metal Oxide Clusters. Journal of Physical Chemistry C, 2014, 118, 29278-29286.	1.5	32
90	Mono- and bimetallic Ir(<scp>iii</scp>) based catalysts for the homogeneous photocatalytic reduction of CO ₂ under visible light irradiation. New insights into catalyst deactivation. Dalton Transactions, 2014, 43, 13259.	1.6	48

#	Article	IF	Citations
91	Orientational changes of supported chiral 2,2′-dihydroxy-1,1′binaphthyl molecules. Physical Chemistry Chemical Physics, 2014, 16, 7299-7306.	1.3	21
92	High Sintering Resistance of Size-Selected Platinum Cluster Catalysts by Suppressed Ostwald Ripening. Nano Letters, 2014, 14, 5803-5809.	4.5	131
93	Same ligand – Different binding: A way to control the binding of N-acetyl-cysteine (NAC) to Pt clusters. Journal of Colloid and Interface Science, 2014, 426, 264-269.	5.0	9
94	Small Supported Plasmonic Silver Clusters. Small, 2014, 10, 2340-2344.	5.2	18
95	The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nature Materials, 2013, 12, 919-924.	13.3	327
96	Submonolayer sensitive adsorption study of trichloroethene on single crystal surfaces by means of MIES, UPS and TPD. Surface Science, 2013, 609, 18-29.	0.8	10
97	Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study. Physical Chemistry Chemical Physics, 2013, 15, 19253.	1.3	38
98	Fundamental Insight into the Substrateâ€Dependent Ripening of Monodisperse Clusters. ChemCatChem, 2013, 5, 3330-3341.	1.8	52
99	Chiral Gold and Silver Nanoclusters: Preparation, Size Selection, and Chiroptical Properties. Chemistry of Materials, 2013, 25, 862-870.	3.2	106
100	Cluster Size Effects in the Photocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 13262-13265.	6.6	187
101	In-line reference measurement for surface second harmonic generation spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 541.	0.9	10
102	Infra-red spectroscopy of size selected Au25, Au38 and Au144 ligand protected gold clusters. Physical Chemistry Chemical Physics, 2013, 15, 12539.	1.3	44
103	Size-Selected Platinum Clusters as Electrocatalysts for the Oxygen Reduction Reaction. ECS Transactions, 2013, 50, 1333-1338.	0.3	1
104	Communication: In search of four-atom chiral metal clusters. Journal of Chemical Physics, 2013, 139, 111101.	1.2	8
105	Improving metastable impact electron spectroscopy and ultraviolet photoelectron spectroscopy signals by means of a modified time-of-flight separation. Review of Scientific Instruments, 2012, 83, 013114.	0.6	11
106	Oxidation of Magnesia-Supported Pd ₃₀ Nanoclusters and Catalyzed CO Combustion: Size-Selected Experiments and First-Principles Theory. Journal of Physical Chemistry C, 2012, 116, 9594-9607.	1.5	40
107	Size-Selected Subnanometer Cluster Catalysts on Semiconductor Nanocrystal Films for Atomic Scale Insight into Photocatalysis. Nano Letters, 2012, 12, 5903-5906.	4.5	85
108	Preparation and Spectroscopic Properties of Monolayer-Protected Silver Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 8034-8043.	1.5	71

#	Article	IF	CITATIONS
109	Size-Selected Monodisperse Nanoclusters on Supported Graphene: Bonding, Isomerism, and Mobility. Nano Letters, 2012, 12, 5907-5912.	4.5	76
110	Oxidation State and Symmetry of Magnesia-Supported Pd ₁₃ O _{<i>x</i>} Nanocatalysts Influence Activation Barriers of CO Oxidation. Journal of the American Chemical Society, 2012, 134, 7690-7699.	6.6	43
111	Linear and Nonlinear Laser Spectroscopy of Surface Adsorbates with Sub-Monolayer Sensitivity. Journal of Physical Chemistry C, 2012, 116, 8642-8648.	1.5	16
112	Size-selected Metal Clusters: New Models for Catalysis with Atomic Precision. Journal of Applied Sciences, 2011, 11, 1164-1170.	0.1	15
113	Electrochemically induced nanocluster migration. Electrochimica Acta, 2010, 56, 810-816.	2.6	59
114	Adsorption studies of trichloroethylene (TCE) on MgO(100)/Mo(100). Surface Science, 2010, 604, 2184-2189.	0.8	5
115	Characterisation and cleaning of oxide support materials for cavity ringâ€down spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 1147-1151.	0.7	9
116	Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition. Physica Status Solidi (B): Basic Research, 2010, 247, 1001-1015.	0.7	3
117	Temperature Dependent CO Oxidation Mechanisms on Size-Selected Clusters. Journal of Physical Chemistry C, 2010, 114, 1651-1654.	1.5	76
118	AFM tip characterization by Kelvin probe force microscopy. New Journal of Physics, 2010, 12, 093024.	1.2	45
119	Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Physical Chemistry Chemical Physics, 2010, 12, 10288.	1.3	81
120	Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. Physical Chemistry Chemical Physics, 2010, 12, 3203.	1.3	75
121	Control and Manipulation of Gold Nanocatalysis: Effects of Metal Oxide Support Thickness and Composition. Journal of the American Chemical Society, 2009, 131, 538-548.	6.6	203
122	Dual reverse spill-over: Microkinetic simulations of the CO oxidation on Pd nanocatalysts. Chemical Physics Letters, 2008, 461, 235-237.	1.2	14
123	Dual pulsed-beam controlled mole fraction studies of the catalytic oxidation of CO on supported Pd nanocatalysts. Journal of Catalysis, 2008, 255, 234-240.	3.1	27
124	Microkinetic simulations of the oxidation of CO on Pd based nanocatalysis: a model including co-dependent support interactions. Physical Chemistry Chemical Physics, 2008, 10, 5875.	1.3	15
125	Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum. Journal of Applied Physics, 2008, 104, 124313.	1.1	29
126	Micromechanical sensor for studying heats of surface reactions, adsorption, and cluster deposition processes. Review of Scientific Instruments, 2007, 78, 054101.	0.6	12

#	Article	IF	CITATIONS
127	Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters. Nanoscience and Technology, 2007, , 1-191.	1.5	32
128	Cluster Chemistry:  Size-Dependent Reactivity Induced by Reverse Spill-Over. Journal of the American Chemical Society, 2007, 129, 9635-9639.	6.6	52
129	Chapter 1 Size effects in the chemistry of small clusters. Chemical Physics of Solid Surfaces, 2007, , 1-51.	0.3	15
130	Cavity ring-down spectroscopy of metallic gold nanoparticles. European Physical Journal D, 2007, 45, 501-506.	0.6	24
131	Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Topics in Catalysis, 2007, 44, 145-158.	1.3	190
132	The polymerization of acetylene on supported metal clusters. Low Temperature Physics, 2006, 32, 1097-1103.	0.2	10
133	Monodispersed cluster-assembled materials. Materials Today, 2006, 9, 48-49.	8.3	9
134	CO Combustion on Supported Gold Clusters. ChemPhysChem, 2006, 7, 1871-1879.	1.0	121
135	Conical octopole ion guide: Design, focusing, and its application to the deposition of low energetic clusters. Review of Scientific Instruments, 2006, 77, 013302.	0.6	28
136	Nanocatalysis. , 2005, , 551-588.		5
136	Nanocatalysis., 2005, , 551-588. Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no.	0.1	5 O
		0.1	
137	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005,		0
137	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005, 307, 403-407. Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Physical Chemistry	6.0	0 1,358
137 138 139	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005, 307, 403-407. Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Physical Chemistry Chemical Physics, 2005, 7, 955-962. Gold Atoms and Dimers on Amorphous SiO2:Â Calculation of Optical Properties and Cavity Ringdown	6.0	0 1,358 42
137 138 139 140	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005, 307, 403-407. Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Physical Chemistry Chemical Physics, 2005, 7, 955-962. Gold Atoms and Dimers on Amorphous SiO2:Â Calculation of Optical Properties and Cavity Ringdown Spectroscopy Measurements. Journal of Physical Chemistry B, 2005, 109, 19876-19884. Cluster and Periodic DFT Calculations of MgO/Pd(CO) and MgO/Pd(CO)2Surface Complexes. Journal of	6.0 1.3 1.2	0 1,358 42 47
137 138 139 140	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no. Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005, 307, 403-407. Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Physical Chemistry Chemical Physics, 2005, 7, 955-962. Gold Atoms and Dimers on Amorphous SiO2:Â Calculation of Optical Properties and Cavity Ringdown Spectroscopy Measurements. Journal of Physical Chemistry B, 2005, 109, 19876-19884. Cluster and Periodic DFT Calculations of MgO/Pd(CO) and MgO/Pd(CO)2Surface Complexes. Journal of Physical Chemistry B, 2005, 109, 3416-3422. Optical Absorption Spectrum of Gold Atoms Deposited onSiO2from Cavity Ringdown Spectroscopy.	6.0 1.3 1.2	0 1,358 42 47

#	Article	IF	CITATIONS
145	Fundamental Aspects of Catalysis on Supported Metal Clusters. ChemInform, 2004, 35, no.	0.1	О
146	Chemistry on single atoms: key factors for the acetylene trimerization on MgO-supported Rh, Pd, and Ag atoms. Chemical Physics Letters, 2004, 399, 266-270.	1.2	29
147	Fundamental aspects of catalysis on supported metal clusters. Journal of Materials Chemistry, 2004, 14, 564.	6.7	166
148	Low-Temperature Cluster Catalysis. Journal of the American Chemical Society, 2004, 126, 2732-2737.	6.6	162
149	Size dependent reaction kinetics of small gold clusters with carbon monoxide: Influence of internal degrees of freedom and carbonyl complex stability. European Physical Journal D, 2003, 24, 327-330.	0.6	40
150	Einfluss der geometrischen und elektronischen Struktur sowie der elementaren Zusammensetzung von Clustern auf chemische Prozesse in der Nanometerskala. Angewandte Chemie, 2003, 115, 1335-1338.	1.6	52
151	Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters ChemInform, 2003, 34, no.	0.1	1
152	Catalytic CO Oxidation by Free Au2-: Experiment and Theory ChemInform, 2003, 34, no.	0.1	1
153	Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters. Angewandte Chemie - International Edition, 2003, 42, 1297-1300.	7.2	547
154	Turn-over frequencies of catalytic reactions on nanocatalysts measured by pulsed molecular beams and quantitative mass spectrometry. International Journal of Mass Spectrometry, 2003, 229, 99-106.	0.7	33
155	Acetylene polymerization on supported transition metal clusters. Journal of Molecular Catalysis A, 2003, 199, 103-113.	4.8	39
156	Catalytic CO Oxidation by Free Au2-:Â Experiment and Theory. Journal of the American Chemical Society, 2003, 125, 10437-10445.	6.6	386
157	Cluster Size-Dependent Mechanisms of the CO + NO Reaction on Small Pdn(nâ‰\$0) Clusters on Oxide Surfaces. Journal of the American Chemical Society, 2003, 125, 7964-7970.	6.6	103
158	Interaction of Ag, Rh, and Pd Atoms with MgO Thin Films Studied by the CO Probe Molecule. Journal of Physical Chemistry B, 2003, 107, 9377-9387.	1.2	37
159	Chemical reactivity of free and supported metal clusters. , 2003, , 153-192.		1
160	Synthesis of monodispersed model catalysts using softlanding cluster deposition. Pure and Applied Chemistry, 2002, 74, 1527-1535.	0.9	51
161	Selectivity of Surface Defects for the Activation of Supported Metal Atoms:Â Acetylene Cyclotrimerization on Pd1/MgO. Journal of Physical Chemistry B, 2002, 106, 3173-3181.	1.2	42
162	Conversion of NO to N2O on MgO Thin Films. Journal of Physical Chemistry B, 2002, 106, 7666-7673.	1.2	34

#	Article	IF	Citations
163	Chemisorption and Reactivity of Methanol on MgO Thin Films. Journal of Physical Chemistry B, 2002, 106, 11961-11969.	1.2	59
164	NO Monomers on MgO Powders and Thin Films. Journal of Physical Chemistry B, 2002, 106, 1637-1645.	1.2	50
165	Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: Model complexes for catalytic CO oxidation. Physical Chemistry Chemical Physics, 2002, 4, 1707-1709.	1.3	161
166	Pd1/MgO(): a model system in nanocatalysis. Surface Science, 2002, 514, 249-255.	0.8	37
167	Identification of Defect Sites on MgO(100) Thin Films by Decoration with Pd Atoms and Studying CO Adsorption Properties. Journal of the American Chemical Society, 2001, 123, 6172-6178.	6.6	108
168	Role of Point Defects in the Catalytic Activation of Pd Atoms Supported on the MgO Surface. Progress in Theoretical Chemistry and Physics, 2001, , 183-198.	0.2	2
169	Size-Selected Clusters on Solid Surfaces. Critical Reviews in Solid State and Materials Sciences, 2001, 26, 251-290.	6.8	69
170	CO Oxidation on a Single Pd Atom Supported on Magnesia. Physical Review Letters, 2001, 86, 5950-5953.	2.9	173
171	Nano-assembled Pd catalysts on MgO thin films. Thin Solid Films, 2001, 400, 37-42.	0.8	25
172	Reaction mechanism for the oxidation of free silver dimers. Chemical Physics Letters, 2001, 340, 282-288.	1.2	47
173	Tuning the Selectivity of Acetylene Polymerization Atom by Atom. Journal of Catalysis, 2001, 198, 122-127.	3.1	85
174	Nanoassembled Model Catalysts: Changing Efficiency and Selectivity Atom-by-Atom. Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	0
175	Tuning the oxidation of carbon monoxide using nanoassembled model catalysts. Chemical Physics, 2000, 262, 189-200.	0.9	109
176	Size-effects in the acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤≧0). Surface Science, 2000, 454-456, 984-989.	0.8	46
177	Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope. Surface Science, 2000, 465, 331-338.	0.8	48
178	Nanoassembled model catalysts. Journal Physics D: Applied Physics, 2000, 33, R85-R102.	1.3	196
179	Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 â‰দা â‰ষ্ট0): One Atom Is Enough!. Journal of the American Chemical Society, 2000, 122, 3453-3457.	6.6	410
180	Role of Surface Defects in the Activation of Supported Metals:  A Quantum-Chemical Study of Acetylene Cyclotrimerization on Pd1/MgO. Journal of Physical Chemistry B, 2000, 104, 10612-10617.	1.2	48

#	Article	IF	CITATIONS
181	Physical Chemistry of Supported Clusters. Springer Series in Cluster Physics, 2000, , 237-273.	0.3	13
182	The reactivity of gold and platinum metals in their cluster phase. European Physical Journal D, 1999, 9, 35-39.	0.6	70
183	Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters:Â Each Atom Counts. Journal of the American Chemical Society, 1999, 121, 3214-3217.	6.6	467
184	When Gold Is Not Noble:Â Nanoscale Gold Catalysts. Journal of Physical Chemistry A, 1999, 103, 9573-9578.	1.1	1,375
185	The reactivity of gold and platinum metals in their cluster phase. , 1999, , 35-39.		5
186	Size-Dependent Molecular Dissociation on Mass-Selected, Supported Metal Clusters. Journal of the American Chemical Society, 1998, 120, 9668-9671.	6.6	138
187	Size-dependent light emission from mass-selected clusters. European Physical Journal D, 1998, 2, 79-82.	0.6	7
188	Size-selected, supported clusters: the interaction of carbon monoxide with nickel clusters. Applied Physics A: Materials Science and Processing, 1998, 67, 621-626.	1.1	37
189	Photochemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1998, 414, 261-270.	0.8	6
190	A new cluster source for the generation of binary metal clusters. Review of Scientific Instruments, 1997, 68, 3718-3722.	0.6	16
191	Chemical reactivity of size-selected supported clusters: An experimental setup. Review of Scientific Instruments, 1997, 68, 1986-1994.	0.6	226
192	Thermal chemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1997, 377-379, 780-785.	0.8	6
193	Vibrational coupling of CO adsorbed on monodispersed Ni 11 clusters supported on magnesia. Chemical Physics Letters, 1997, 277, 527-531.	1.2	23
194	NaxAu and CsxAu bimetal clusters: Finite size analogs of sodium–gold and cesium–gold compounds. Journal of Chemical Physics, 1996, 105, 5574-5585.	1.2	67
195	Metalâ`'Metal Coordination Chemistry: Free Clusters of Group 11 Elements with Sodium§. The Journal of Physical Chemistry, 1996, 100, 15033-15040.	2.9	19
196	CO Chemisorption on Monodispersed Platinum Clusters on SiO2: Detection of CO Chemisorption on Single Platinum Atoms. The Journal of Physical Chemistry, 1995, 99, 8730-8735.	2.9	31
197	Electron stimulated desorption of NO from step sites on $Pt(112)$: The role of chemisorption site geometry on the cross section. Journal of Chemical Physics, 1994, 100, 3925-3929.	1.2	17
198	NO electronic desorption processes from step sites on Pt(112): A comparison between photo―and electron―timulated desorption. Journal of Chemical Physics, 1994, 101, 4373-4378.	1.2	15

#		Article	IF	CITATIONS
19	99	Phosphine chemistry on molybdenum (110) and oxidized molybdenum (110). The Journal of Physical Chemistry, 1993, 97, 5074-5079.	2.9	3
20	00	Metalâ€Metal Coordination Chemistry: Free Clusters of Group 12 Elements with Sodium. Israel Journal of Chemistry, 1990, 30, 147-155.	1.0	9