List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894597/publications.pdf Version: 2024-02-01

		46918	30010
200	11,453	47	103
papers	citations	h-index	g-index
212	212	212	8250
213	213	213	8250
all docs	docs citations	times ranked	citing authors

HELL HELZ

#	Article	IF	CITATIONS
1	When Gold Is Not Noble:Â Nanoscale Gold Catalysts. Journal of Physical Chemistry A, 1999, 103, 9573-9578.	1.1	1,375
2	Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO. Science, 2005, 307, 403-407.	6.0	1,358
3	Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters. Angewandte Chemie - International Edition, 2003, 42, 1297-1300.	7.2	547
4	Catalytic Oxidation of Carbon Monoxide on Monodispersed Platinum Clusters:Â Each Atom Counts. Journal of the American Chemical Society, 1999, 121, 3214-3217.	6.6	467
5	Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 ≤ ≤30): One Atom Is Enough!. Journal of the American Chemical Society, 2000, 122, 3453-3457.	6.6	410
6	Catalytic CO Oxidation by Free Au2-:Â Experiment and Theory. Journal of the American Chemical Society, 2003, 125, 10437-10445.	6.6	386
7	The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nature Materials, 2013, 12, 919-924.	13.3	327
8	Chemical reactivity of size-selected supported clusters: An experimental setup. Review of Scientific Instruments, 1997, 68, 1986-1994.	0.6	226
9	Control and Manipulation of Gold Nanocatalysis: Effects of Metal Oxide Support Thickness and Composition. Journal of the American Chemical Society, 2009, 131, 538-548.	6.6	203
10	Nanoassembled model catalysts. Journal Physics D: Applied Physics, 2000, 33, R85-R102.	1.3	196
11	Factors in gold nanocatalysis: oxidation of CO in the non-scalable size regime. Topics in Catalysis, 2007, 44, 145-158.	1.3	190
12	Cluster Size Effects in the Photocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2013, 135, 13262-13265.	6.6	187
13	CO Oxidation on a Single Pd Atom Supported on Magnesia. Physical Review Letters, 2001, 86, 5950-5953.	2.9	173
14	Fundamental aspects of catalysis on supported metal clusters. Journal of Materials Chemistry, 2004, 14, 564.	6.7	166
15	Low-Temperature Cluster Catalysis. Journal of the American Chemical Society, 2004, 126, 2732-2737.	6.6	162
16	Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: Model complexes for catalytic CO oxidation. Physical Chemistry Chemical Physics, 2002, 4, 1707-1709.	1.3	161
17	Size-Dependent Molecular Dissociation on Mass-Selected, Supported Metal Clusters. Journal of the American Chemical Society, 1998, 120, 9668-9671.	6.6	138
18	High Sintering Resistance of Size-Selected Platinum Cluster Catalysts by Suppressed Ostwald Ripening. Nano Letters, 2014, 14, 5803-5809.	4.5	131

#	Article	IF	CITATIONS
19	Charging of Au Atoms on TiO2Thin Films from CO Vibrational Spectroscopy and DFT Calculations. Journal of Physical Chemistry B, 2005, 109, 18418-18426.	1.2	126
20	CO Combustion on Supported Gold Clusters. ChemPhysChem, 2006, 7, 1871-1879.	1.0	121
21	Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nature Communications, 2016, 7, 10389.	5.8	115
22	Tuning the oxidation of carbon monoxide using nanoassembled model catalysts. Chemical Physics, 2000, 262, 189-200.	0.9	109
23	Identification of Defect Sites on MgO(100) Thin Films by Decoration with Pd Atoms and Studying CO Adsorption Properties. Journal of the American Chemical Society, 2001, 123, 6172-6178.	6.6	108
24	Chiral Gold and Silver Nanoclusters: Preparation, Size Selection, and Chiroptical Properties. Chemistry of Materials, 2013, 25, 862-870.	3.2	106
25	Cluster Size-Dependent Mechanisms of the CO + NO Reaction on Small Pdn(n≤30) Clusters on Oxide Surfaces. Journal of the American Chemical Society, 2003, 125, 7964-7970.	6.6	103
26	Tuning the Selectivity of Acetylene Polymerization Atom by Atom. Journal of Catalysis, 2001, 198, 122-127.	3.1	85
27	Size-Selected Subnanometer Cluster Catalysts on Semiconductor Nanocrystal Films for Atomic Scale Insight into Photocatalysis. Nano Letters, 2012, 12, 5903-5906.	4.5	85
28	Size-selected clusters as heterogeneous model catalysts under applied reaction conditions. Physical Chemistry Chemical Physics, 2010, 12, 10288.	1.3	81
29	Optical Absorption Spectrum of Gold Atoms Deposited onSiO2from Cavity Ringdown Spectroscopy. Physical Review Letters, 2005, 94, 213402.	2.9	80
30	Temperature Dependent CO Oxidation Mechanisms on Size-Selected Clusters. Journal of Physical Chemistry C, 2010, 114, 1651-1654.	1.5	76
31	Size-Selected Monodisperse Nanoclusters on Supported Graphene: Bonding, Isomerism, and Mobility. Nano Letters, 2012, 12, 5907-5912.	4.5	76
32	Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM. Physical Chemistry Chemical Physics, 2010, 12, 3203.	1.3	75
33	Preparation and Spectroscopic Properties of Monolayer-Protected Silver Nanoclusters. Journal of Physical Chemistry C, 2012, 116, 8034-8043.	1.5	71
34	The reactivity of gold and platinum metals in their cluster phase. European Physical Journal D, 1999, 9, 35-39.	0.6	70
35	Size-Selected Clusters on Solid Surfaces. Critical Reviews in Solid State and Materials Sciences, 2001, 26, 251-290.	6.8	69
36	NaxAu and CsxAu bimetal clusters: Finite size analogs of sodium–gold and cesium–gold compounds. Journal of Chemical Physics, 1996, 105, 5574-5585.	1.2	67

#	Article	IF	CITATIONS
37	Ethylene hydrogenation on supported Ni, Pd and Pt nanoparticles: Catalyst activity, deactivation and the d-band model. Journal of Catalysis, 2016, 333, 51-58.	3.1	62
38	Chemisorption and Reactivity of Methanol on MgO Thin Films. Journal of Physical Chemistry B, 2002, 106, 11961-11969.	1.2	59
39	Electrochemically induced nanocluster migration. Electrochimica Acta, 2010, 56, 810-816.	2.6	59
40	Einfluss der geometrischen und elektronischen Struktur sowie der elementaren Zusammensetzung von Clustern auf chemische Prozesse in der Nanometerskala. Angewandte Chemie, 2003, 115, 1335-1338.	1.6	52
41	Cluster Chemistry:  Size-Dependent Reactivity Induced by Reverse Spill-Over. Journal of the American Chemical Society, 2007, 129, 9635-9639.	6.6	52
42	Fundamental Insight into the Substrateâ€Dependent Ripening of Monodisperse Clusters. ChemCatChem, 2013, 5, 3330-3341.	1.8	52
43	Synthesis of monodispersed model catalysts using softlanding cluster deposition. Pure and Applied Chemistry, 2002, 74, 1527-1535.	0.9	51
44	NO Monomers on MgO Powders and Thin Films. Journal of Physical Chemistry B, 2002, 106, 1637-1645.	1.2	50
45	Catalytic Non-Oxidative Coupling of Methane on Ta ₈ O ₂ ⁺ . Journal of the American Chemical Society, 2020, 142, 5862-5869.	6.6	49
46	Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope. Surface Science, 2000, 465, 331-338.	0.8	48
47	Role of Surface Defects in the Activation of Supported Metals:  A Quantum-Chemical Study of Acetylene Cyclotrimerization on Pd1/MgO. Journal of Physical Chemistry B, 2000, 104, 10612-10617.	1.2	48
48	Mono- and bimetallic Ir(<scp>iii</scp>) based catalysts for the homogeneous photocatalytic reduction of CO ₂ under visible light irradiation. New insights into catalyst deactivation. Dalton Transactions, 2014, 43, 13259.	1.6	48
49	Reaction mechanism for the oxidation of free silver dimers. Chemical Physics Letters, 2001, 340, 282-288.	1.2	47
50	Gold Atoms and Dimers on Amorphous SiO2:Â Calculation of Optical Properties and Cavity Ringdown Spectroscopy Measurements. Journal of Physical Chemistry B, 2005, 109, 19876-19884.	1.2	47
51	Plasmons in supported size-selected silver nanoclusters. Physical Chemistry Chemical Physics, 2015, 17, 17541-17544.	1.3	47
52	Size-effects in the acetylene cyclotrimerization on supported size-selected Pdn clusters (1≤â‰ፄ0). Surface Science, 2000, 454-456, 984-989.	0.8	46
53	AFM tip characterization by Kelvin probe force microscopy. New Journal of Physics, 2010, 12, 093024.	1.2	45
54	Infra-red spectroscopy of size selected Au25, Au38 and Au144 ligand protected gold clusters. Physical Chemistry Chemical Physics, 2013, 15, 12539.	1.3	44

#	Article	IF	CITATIONS
55	Oxidation State and Symmetry of Magnesia-Supported Pd ₁₃ O _{<i>x</i>} Nanocatalysts Influence Activation Barriers of CO Oxidation. Journal of the American Chemical Society, 2012, 134, 7690-7699.	6.6	43
56	Ethanol photocatalysis on rutile TiO ₂ (110): the role of defects and water. Physical Chemistry Chemical Physics, 2015, 17, 22809-22814.	1.3	43
57	Selectivity of Surface Defects for the Activation of Supported Metal Atoms:Â Acetylene Cyclotrimerization on Pd1/MgO. Journal of Physical Chemistry B, 2002, 106, 3173-3181.	1.2	42
58	Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Physical Chemistry Chemical Physics, 2005, 7, 955-962.	1.3	42
59	Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications. ACS Catalysis, 2017, 7, 4152-4162.	5.5	41
60	Size dependent reaction kinetics of small gold clusters with carbon monoxide: Influence of internal degrees of freedom and carbonyl complex stability. European Physical Journal D, 2003, 24, 327-330.	0.6	40
61	Oxidation of Magnesia-Supported Pd ₃₀ Nanoclusters and Catalyzed CO Combustion: Size-Selected Experiments and First-Principles Theory. Journal of Physical Chemistry C, 2012, 116, 9594-9607.	1.5	40
62	Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces. Nature Communications, 2016, 7, 10700.	5.8	40
63	Acetylene polymerization on supported transition metal clusters. Journal of Molecular Catalysis A, 2003, 199, 103-113.	4.8	39
64	Rational design, characterization and catalytic application of metal clusters functionalized with hydrophilic, chiral ligands: a proof of principle study. Physical Chemistry Chemical Physics, 2013, 15, 19253.	1.3	38
65	Surface Species in Photocatalytic Methanol Reforming on Pt/TiO ₂ (110): Learning from Surface Science Experiments for Catalytically Relevant Conditions. ACS Catalysis, 2020, 10, 4080-4091.	5.5	38
66	Size-selected, supported clusters: the interaction of carbon monoxide with nickel clusters. Applied Physics A: Materials Science and Processing, 1998, 67, 621-626.	1.1	37
67	Pd1/MgO(): a model system in nanocatalysis. Surface Science, 2002, 514, 249-255.	0.8	37
68	Interaction of Ag, Rh, and Pd Atoms with MgO Thin Films Studied by the CO Probe Molecule. Journal of Physical Chemistry B, 2003, 107, 9377-9387.	1.2	37
69	Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials. Surface Science, 2016, 652, 7-19.	0.8	36
70	Conversion of NO to N2O on MgO Thin Films. Journal of Physical Chemistry B, 2002, 106, 7666-7673.	1.2	34
71	Turn-over frequencies of catalytic reactions on nanocatalysts measured by pulsed molecular beams and quantitative mass spectrometry. International Journal of Mass Spectrometry, 2003, 229, 99-106.	0.7	33
72	Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters. Nanoscience and Technology, 2007, , 1-191.	1.5	32

#	Article	IF	CITATIONS
73	Catalytic Dehydration of 2-Propanol by Size-Selected (WO3)n and (MoO3)n Metal Oxide Clusters. Journal of Physical Chemistry C, 2014, 118, 29278-29286.	1.5	32
74	Controlling Ethylene Hydrogenation Reactivity on Pt ₁₃ Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie - International Edition, 2016, 55, 8953-8957.	7.2	32
75	CO Chemisorption on Monodispersed Platinum Clusters on SiO2: Detection of CO Chemisorption on Single Platinum Atoms. The Journal of Physical Chemistry, 1995, 99, 8730-8735.	2.9	31
76	Unraveling Side Reactions in the Photocatalytic Reduction of CO ₂ : Evidence for Lightâ€Induced Deactivation Processes in Homogeneous Photocatalysis. ChemCatChem, 2015, 7, 690-697.	1.8	30
77	Chemistry on single atoms: key factors for the acetylene trimerization on MgO-supported Rh, Pd, and Ag atoms. Chemical Physics Letters, 2004, 399, 266-270.	1.2	29
78	Cavity ring-down spectrometer for measuring the optical response of supported size-selected clusters and surface defects in ultrahigh vacuum. Journal of Applied Physics, 2008, 104, 124313.	1.1	29
79	Ethene to Graphene: Surface Catalyzed Chemical Pathways, Intermediates, and Assembly. Journal of Physical Chemistry C, 2017, 121, 9413-9423.	1.5	29
80	Thermal Control of Selectivity in Photocatalytic, Water-Free Alcohol Photoreforming. ACS Catalysis, 2018, 8, 11076-11084.	5.5	29
81	Conical octopole ion guide: Design, focusing, and its application to the deposition of low energetic clusters. Review of Scientific Instruments, 2006, 77, 013302.	0.6	28
82	Dual pulsed-beam controlled mole fraction studies of the catalytic oxidation of CO on supported Pd nanocatalysts. Journal of Catalysis, 2008, 255, 234-240.	3.1	27
83	Nano-assembled Pd catalysts on MgO thin films. Thin Solid Films, 2001, 400, 37-42.	0.8	25
84	Cavity ring-down spectroscopy of metallic gold nanoparticles. European Physical Journal D, 2007, 45, 501-506.	0.6	24
85	Can Support Acidity Predict Sub-Nanometer Catalyst Activity Trends?. ACS Catalysis, 2017, 7, 6738-6744.	5.5	24
86	Vibrational coupling of CO adsorbed on monodispersed Ni11 clusters supported on magnesia. Chemical Physics Letters, 1997, 277, 527-531.	1.2	23
87	Why co-catalyst-loaded rutile facilitates photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 1491-1496.	1.3	23
88	Communication: Water activation and splitting by single metal-atom anions. Journal of Chemical Physics, 2018, 149, 221101.	1.2	22
89	Orientational changes of supported chiral 2,2′-dihydroxy-1,1′binaphthyl molecules. Physical Chemistry Chemical Physics, 2014, 16, 7299-7306.	1.3	21
90	Metalâ^'Metal Coordination Chemistry: Free Clusters of Group 11 Elements with Sodium§. The Journal of Physical Chemistry, 1996, 100, 15033-15040.	2.9	19

#	Article	IF	CITATIONS
91	Introducing catalysis in photocatalysis: What can be understood from surface science studies of alcohol photoreforming on TiO ₂ . Journal of Physics Condensed Matter, 2019, 31, 473002.	0.7	19
92	Small Supported Plasmonic Silver Clusters. Small, 2014, 10, 2340-2344.	5.2	18
93	Ostwald ripening of supported Pt nanoclusters with initial size-selected distributions. Chemical Physics Letters, 2015, 631-632, 21-25.	1.2	18
94	Electrochemical stability of subnanometer Pt clusters. Electrochimica Acta, 2018, 277, 211-217.	2.6	18
95	Device-Compatible Chiroptical Surfaces through Self-Assembly of Enantiopure Allenes. Langmuir, 2018, 34, 4548-4553.	1.6	18
96	Chirality transfer from organic ligands to silver nanostructures <i>via</i> chiral polarisation of the electric field. Physical Chemistry Chemical Physics, 2018, 20, 20347-20351.	1.3	18
97	Electron stimulated desorption of NO from step sites on Pt(112): The role of chemisorption site geometry on the cross section. Journal of Chemical Physics, 1994, 100, 3925-3929.	1.2	17
98	Laser Mass Spectrometry with Circularly Polarized Light: Circular Dichroism of Cold Molecules in a Supersonic Gas Beam. ChemPhysChem, 2014, 15, 2762-2767.	1.0	17
99	Very small "window of opportunity―for generating CO oxidation-active Au _n on TiO ₂ . Physical Chemistry Chemical Physics, 2014, 16, 6735-6742.	1.3	17
100	Functionalization of small platinum nanoparticles with amines and phosphines: Ligand binding modes and particle stability. Journal of Colloid and Interface Science, 2016, 478, 72-80.	5.0	17
101	Circular Dichroism and Isotropy – Polarity Reversal of Ellipticity in Molecular Films of 1,1'â€Biâ€2â€Naphtol. ChemPhysChem, 2019, 20, 62-69.	1.0	17
102	A new cluster source for the generation of binary metal clusters. Review of Scientific Instruments, 1997, 68, 3718-3722.	0.6	16
103	Cluster and Periodic DFT Calculations of MgO/Pd(CO) and MgO/Pd(CO)2Surface Complexes. Journal of Physical Chemistry B, 2005, 109, 3416-3422.	1.2	16
104	Linear and Nonlinear Laser Spectroscopy of Surface Adsorbates with Sub-Monolayer Sensitivity. Journal of Physical Chemistry C, 2012, 116, 8642-8648.	1.5	16
105	Atomic Structure Control of Silica Thin Films on Pt(111). Journal of Physical Chemistry C, 2015, 119, 13665-13669.	1.5	16
106	Size-dependent gas phase reactivity of tantalum cluster cations with small alcohols. International Journal of Mass Spectrometry, 2015, 375, 9-13.	0.7	16
107	Effect of Thiol-Ligands on the Optical Response of Supported Silver Clusters. Journal of Physical Chemistry C, 2017, 121, 9331-9336.	1.5	16
108	Thermal Dehydrogenation of Methane Enhanced by μ2-Oxo Ligands in Tantalum Cluster Cations [TaxO]+, x = 4, 5. Journal of Physical Chemistry C, 2018, 122, 25628-25637.	1.5	16

#	Article	IF	CITATIONS
109	NO electronic desorption processes from step sites on Pt(112): A comparison between photo―and electronâ€stimulated desorption. Journal of Chemical Physics, 1994, 101, 4373-4378.	1.2	15
110	Chapter 1 Size effects in the chemistry of small clusters. Chemical Physics of Solid Surfaces, 2007, , 1-51.	0.3	15
111	Microkinetic simulations of the oxidation of CO on Pd based nanocatalysis: a model including co-dependent support interactions. Physical Chemistry Chemical Physics, 2008, 10, 5875.	1.3	15
112	Size-selected Metal Clusters: New Models for Catalysis with Atomic Precision. Journal of Applied Sciences, 2011, 11, 1164-1170.	0.1	15
113	Dual reverse spill-over: Microkinetic simulations of the CO oxidation on Pd nanocatalysts. Chemical Physics Letters, 2008, 461, 235-237.	1.2	14
114	Two reaction regimes in the oxidation of larger cationic tantalum clusters (Ta _n ⁺ , n = 13–40) under multi-collision conditions. Physical Chemistry Chemical Physics, 2016, 18, 8115-8119.	1.3	14
115	Plasmonic support-mediated activation of 1 nm platinum clusters for catalysis. Physical Chemistry Chemical Physics, 2017, 19, 30570-30577.	1.3	14
116	Reactions in the Photocatalytic Conversion of Tertiary Alcohols on Rutile TiO 2 (110). Angewandte Chemie - International Edition, 2019, 58, 14255-14259.	7.2	14
117	Cluster Catalysis with Lattice Oxygen: Tracing Oxygen Transport from a Magnetite (001) Support onto Small Pt Clusters. ACS Catalysis, 2021, 11, 9519-9529.	5.5	14
118	Physical Chemistry of Supported Clusters. Springer Series in Cluster Physics, 2000, , 237-273.	0.3	13
119	Micromechanical sensor for studying heats of surface reactions, adsorption, and cluster deposition processes. Review of Scientific Instruments, 2007, 78, 054101.	0.6	12
120	Using controlled ion extraction to combine a ring electrode trap with a reflectron time-of-flight mass spectrometer. International Journal of Mass Spectrometry, 2015, 387, 8-15.	0.7	12
121	Mass‧elected Circular Dichroism of Supersonicâ€Beamâ€Cooled [D ₄]â€{ <i>R</i>)â€{+)â€3â€Methylcyclopentanone. ChemPhysChem, 2016, 17, 4052-4058.	1.0	12
122	Doping-Dependent Adsorption and Photon-Stimulated Desorption of CO on GaN(0001). Journal of Physical Chemistry C, 2017, 121, 8473-8479.	1.5	12
123	Supported sub-nanometer Ta oxide clusters as model catalysts for the selective epoxidation of cyclooctene. New Journal of Chemistry, 2018, 42, 3035-3041.	1.4	12
124	Regulating Photochemical Selectivity with Temperature: Isobutanol on TiO ₂ (110). Journal of the American Chemical Society, 2020, 142, 13072-13080.	6.6	12
125	CO ₂ -Activation by size-selected tantalum cluster cations (Ta _{1–16} ⁺): thermalization governing reaction selectivity. Physical Chemistry Chemical Physics, 2022, 24, 2623-2629.	1.3	12
126	Improving metastable impact electron spectroscopy and ultraviolet photoelectron spectroscopy signals by means of a modified time-of-flight separation. Review of Scientific Instruments, 2012, 83, 013114.	0.6	11

#	Article	IF	CITATIONS
127	Consecutive reactions of small, free tantalum clusters with dioxygen controlled by relaxation dynamics. Physical Chemistry Chemical Physics, 2017, 19, 5985-5993.	1.3	11
128	Highâ€Resolution Absorption and Electronic Circular Dichroism Spectra of (<i>R</i>)â€(+)â€1â€Phenylethanol. Confident Interpretation Based on the Synergy between Experiments and Computations. ChemPhysChem, 2018, 19, 715-723.	1.0	11
129	Influence of Local Defects on the Dynamics of O–H Bond Breaking and Formation on a Magnetite Surface. Journal of Physical Chemistry C, 2019, 123, 19742-19747.	1.5	11
130	Origin of Poisoning in Methanol Photoreforming on TiO ₂ (110): The Importance of Thermal Back-Reaction Steps in Photocatalysis. ACS Catalysis, 2020, 10, 7747-7752.	5.5	11
131	The polymerization of acetylene on supported metal clusters. Low Temperature Physics, 2006, 32, 1097-1103.	0.2	10
132	Submonolayer sensitive adsorption study of trichloroethene on single crystal surfaces by means of MIES, UPS and TPD. Surface Science, 2013, 609, 18-29.	0.8	10
133	In-line reference measurement for surface second harmonic generation spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 541.	0.9	10
134	Suppression of Deactivation Processes in Photocatalytic Reduction of CO ₂ Using Pulsed Light. ChemCatChem, 2016, 8, 2688-2695.	1.8	10
135	From oxidative degradation to direct oxidation: size regimes in the consecutive reaction of cationic tantalum clusters with dioxygen. Physical Chemistry Chemical Physics, 2017, 19, 10863-10869.	1.3	10
136	Chiroptical inversion for isolated vibronic transitions of supersonic beam-cooled molecules. Physical Chemistry Chemical Physics, 2017, 19, 21297-21303.	1.3	10
137	Photocatalytic selectivity switch to C–C scission: α-methyl ejection oftert-butanol on TiO2(110). Physical Chemistry Chemical Physics, 2018, 20, 7105-7111.	1.3	10
138	Enantiospecific Desorption Triggered by Circularly Polarized Light. Angewandte Chemie - International Edition, 2019, 58, 15685-15689.	7.2	10
139	Ensemble Effects in the Temperatureâ€Dependent Photoluminescence of Silicon Nanocrystals. Chemistry - A European Journal, 2019, 25, 3061-3067.	1.7	10
140	In situ Secondâ€Harmonic Generation Circular Dichroism with Submonolayer Sensitivity. ChemPhysChem, 2019, 20, 134-141.	1.0	10
141	Carbide Dihydrides: Carbonaceous Species Identified in Ta ₄ ⁺ â€Mediated Methane Dehydrogenation. Angewandte Chemie - International Edition, 2020, 59, 23631-23635.	7.2	10
142	Metalâ€Metal Coordination Chemistry: Free Clusters of Group 12 Elements with Sodium. Israel Journal of Chemistry, 1990, 30, 147-155.	1.0	9
143	Monodispersed cluster-assembled materials. Materials Today, 2006, 9, 48-49.	8.3	9
144	Characterisation and cleaning of oxide support materials for cavity ringâ€down spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 1147-1151.	0.7	9

#	Article	IF	CITATIONS
145	Same ligand – Different binding: A way to control the binding of N-acetyl-cysteine (NAC) to Pt clusters. Journal of Colloid and Interface Science, 2014, 426, 264-269.	5.0	9
146	Electrodeposition of Pt - Rare Earth Alloys as ORR Catalysts for Fuel Cells. ECS Transactions, 2016, 75, 323-332.	0.3	9
147	H ₂ /D ₂ exchange reaction on mono-disperse Pt clusters: enhanced activity from minute O ₂ concentrations. Catalysis Science and Technology, 2016, 6, 6893-6900.	2.1	9
148	Anhydrous Ethanol Dehydrogenation on Metal–Organic Chemical Vapor Deposition Grown GaN(0001). Journal of Physical Chemistry C, 2017, 121, 16393-16398.	1.5	9
149	High stability of thiol-protected colloidal platinum nanoparticles with reduced ligand coverages in the hydrogenation of 3-hexyne. Catalysis Communications, 2017, 100, 85-88.	1.6	9
150	Towards Size ontrolled Deposition of Palladium Nanoparticles from Polyoxometalate Precursors: An Electrochemical Scanning Tunneling Microscopy Study. ChemElectroChem, 2021, 8, 1280-1288.	1.7	9
151	Room-Temperature Methane Activation Mediated by Free Tantalum Cluster Cations: Size-by-Size Reactivity. Journal of Physical Chemistry A, 2021, 125, 5289-5302.	1.1	9
152	Communication: In search of four-atom chiral metal clusters. Journal of Chemical Physics, 2013, 139, 111101.	1.2	8
153	Surface Oxidation of Supported, Size-Selected Silver Clusters. Journal of Cluster Science, 2017, 28, 3185-3192.	1.7	8
154	A Microscopy Approach to Investigating the Energetics of Small Supported Metal Clusters. Journal of Physical Chemistry C, 2018, 122, 22569-22576.	1.5	8
155	Thermal C–O coupling reactions of Ta methylene clusters [Ta _n CH ₂] ⁺ (<i>n</i> = 1, 4) with O ₂ . Physical Chemistry Chemical Physics, 2019, 21, 20743-20749.	1.3	8
156	Size-dependent light emission from mass-selected clusters. European Physical Journal D, 1998, 2, 79-82.	0.6	7
157	Nickel clusters on TiO ₂ (110): thermal chemistry and photocatalytic hydrogen evolution of methanol. Catalysis Science and Technology, 2020, 10, 7630-7639.	2.1	7
158	Thermal chemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1997, 377-379, 780-785.	0.8	6
159	Photochemistry of Mn2(CO)10 deposited on MgO thin films. Surface Science, 1998, 414, 261-270.	0.8	6
160	Optical and morphological properties of thin films of bis-pyrenyl ï€-conjugated molecules. Physical Chemistry Chemical Physics, 2016, 18, 5299-5305.	1.3	6
161	An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics. Review of Scientific Instruments, 2018, 89, 023104.	0.6	6
162	Nanotuning via Local Work Function Control: Ethylene Hydrogenation on Supported Pt Nanoclusters. ACS Catalysis, 2020, 10, 1799-1809.	5.5	6

#	Article	IF	CITATIONS
163	Nanocatalysis. , 2005, , 551-588.		5
164	Adsorption studies of trichloroethylene (TCE) on MgO(100)/Mo(100). Surface Science, 2010, 604, 2184-2189.	0.8	5
165	Chemistry of Methanol and Ethanol on Ozone-Prepared α-Fe ₂ O ₃ (0001). Journal of Physical Chemistry C, 2018, 122, 25404-25410.	1.5	5
166	Tunable Induced Circular Dichroism in Thin Organic Films. Journal of Physical Chemistry C, 2019, 123, 9255-9261.	1.5	5
167	The reactivity of gold and platinum metals in their cluster phase. , 1999, , 35-39.		5
168	Isomer-Selective Detection of Aromatic Molecules in Temperature-Programmed Desorption for Model Catalysis. Analytical Chemistry, 2016, 88, 5392-5397.	3.2	4
169	Electrodeposition of Pt and Gd from the Same Ionic Liquid. ECS Transactions, 2018, 86, 475-487.	0.3	4
170	Controlling Hydrogenation Selectivity by Size: 3-Hexyne on Supported Pt Clusters. Journal of Physical Chemistry C, 2019, 123, 5518-5524.	1.5	4
171	Enantiospecific Desorption Triggered by Circularly Polarized Light. Angewandte Chemie, 2019, 131, 15832-15836.	1.6	4
172	Atomic Undercoordination in Ag Islands on Ru(0001) Grown via Size-Selected Cluster Deposition: An Experimental and Theoretical High-Resolution Core-Level Photoemission Study. Journal of Physical Chemistry C, 2021, 125, 9556-9563.	1.5	4
173	Ethylene hydrogenation on supported Pd nanoparticles: Influence of support on catalyst activity and deactivation. Journal of Catalysis, 2021, 397, 90-97.	3.1	4
174	Tunable induced circular dichroism in gels. Chirality, 2022, 34, 550-558.	1.3	4
175	Phosphine chemistry on molybdenum (110) and oxidized molybdenum (110). The Journal of Physical Chemistry, 1993, 97, 5074-5079.	2.9	3
176	Ultrathin magnesia films as support for molecules and metal clusters: Tuning reactivity by thickness and composition. Physica Status Solidi (B): Basic Research, 2010, 247, 1001-1015.	0.7	3
177	Surface Chemistry of 1- and 3-Hexyne on Pt(111): Desorption, Decomposition, and Dehydrocyclization. Journal of Physical Chemistry C, 2018, 122, 4428-4436.	1.5	3
178	Nonvolatile Memristive Switching in Self-assembled Nanoparticle Dimers. ACS Applied Electronic Materials, 2020, 2, 1099-1105.	2.0	3
179	Water-Assisted Electron-Induced Chemistry of the Nanofabrication Precursor Iron Pentacarbonyl. Journal of Physical Chemistry A, 2021, 125, 1919-1926.	1.1	3
180	Role of Point Defects in the Catalytic Activation of Pd Atoms Supported on the MgO Surface. Progress in Theoretical Chemistry and Physics, 2001, , 183-198.	0.2	2

#	Article	IF	CITATIONS
181	Surface Oxidation of Supported, Size-Selected Silver Clusters. Journal of Cluster Science, 2017, 28, 2401-2408.	1.7	2
182	Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2Â⁻01). Journal of Chemical Physics, 2017, 147, 124704.	1.2	2
183	Hydrogenation of small hydrocarbons on MgO supported Pd nanoparticles: The A-E-model expanded. Journal of Chemical Physics, 2019, 151, 244304.	1.2	2
184	Carbidâ€Ðihydride: kohlenstoffhaltige Spezies identifiziert in der Ta 4 + â€vermittelten Methandehydrierung. Angewandte Chemie, 2020, 132, 23838-23842.	1.6	2
185	Surface second harmonic generation spectra of titania coated Au NPs. Applied Surface Science, 2022, 581, 152381.	3.1	2
186	Structural, Electronic, and Impurity-Doping Effects in Nanoscale Chemistry: Supported Gold Nanoclusters ChemInform, 2003, 34, no.	0.1	1
187	Catalytic CO Oxidation by Free Au2-: Experiment and Theory ChemInform, 2003, 34, no.	0.1	1
188	Size-Selected Platinum Clusters as Electrocatalysts for the Oxygen Reduction Reaction. ECS Transactions, 2013, 50, 1333-1338.	0.3	1
189	Controlling Ethylene Hydrogenation Reactivity on Pt ₁₃ Clusters by Varying the Stoichiometry of the Amorphous Silica Support. Angewandte Chemie, 2016, 128, 9099-9103.	1.6	1
190	Au(111)-supported Platinum Nanoparticles: Ripening and Activity. MRS Advances, 2017, 2, 439-444.	0.5	1
191	Reaktionswege in der photokatalytischen Umsetzung tertiär Alkohole auf Rutilâ€TiO 2 (110). Angewandte Chemie, 2019, 131, 14393-14397.	1.6	1
192	Understanding laser desorption with circularly polarized light. Chirality, 2020, 32, 1341-1353.	1.3	1
193	Chemical reactivity of free and supported metal clusters. , 2003, , 153-192.		1
194	Nanoassembled Model Catalysts: Changing Efficiency and Selectivity Atom-by-Atom. Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	0
195	Low-Temperature Cluster Catalysis ChemInform, 2004, 35, no.	0.1	0
196	Fundamental Aspects of Catalysis on Supported Metal Clusters. ChemInform, 2004, 35, no.	0.1	0
197	Chemical Reactivity of Free and Supported Metal Clusters. ChemInform, 2005, 36, no.	0.1	0
198	Vom Großen aufs Kleine schließen. Nachrichten Aus Der Chemie, 2016, 64, 955-959.	0.0	0

0

#	Article	IF	CITATIONS
199	Innentitelbild: Enantiospecific Desorption Triggered by Circularly Polarized Light (Angew. Chem.) Tj ETQq1 1 0.784	-314 rgBT 1.6	/8verlock 1

200 Enantio-enrichment of Racemic Films Using Circularly Polarized Femtosecond Pulses. , 2019, , .

13