Yiyue Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894198/publications.pdf

Version: 2024-02-01

331670 144013 3,421 62 21 57 h-index citations g-index papers 62 62 62 5167 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Establishment of a Bernard-Soulier syndrome model in zebrafish. Haematologica, 2022, 107, 1655-1668.	3.5	1
2	Coâ€occurrence of <i>BAP1</i> and <i>SF3B1</i> mutations in uveal melanoma induces cellular senescence. Molecular Oncology, 2022, 16, 607-629.	4.6	12
3	Erythropoietin receptor contributes to thrombopoietin receptor (Mpl)-independent thrombocytopoiesis in zebrafish. Leukemia, 2022, , .	7.2	0
4	The role of ambra1 in Pb-induced developmental neurotoxicity in zebrafish. Biochemical and Biophysical Research Communications, 2022, 594, 139-145.	2.1	4
5	Loss of Ripk3 attenuated neutrophil accumulation in a lipopolysaccharide-induced zebrafish inflammatory model. Cell Death Discovery, 2022, 8, 88.	4.7	3
6	Generation of a thrombopoietinâ€deficient thrombocytopenia model in zebrafish. Journal of Thrombosis and Haemostasis, 2022, 20, 1900-1909.	3.8	2
7	Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-κB-Tgfβ1 pathway. Cell Death and Differentiation, 2021, 28, 170-183.	11.2	9
8	Famciclovir leads to failure of hematopoiesis, but may have the benefit of relieving myeloid expansion in MDS-like zebrafish. Toxicology and Applied Pharmacology, 2021, 410, 115334.	2.8	3
9	Runx1 regulates zebrafish neutrophil maturation via synergistic interaction with c-Myb. Journal of Biological Chemistry, 2021, 296, 100272.	3.4	3
10	Asxl1 C-terminal mutation perturbs neutrophil differentiation in zebrafish. Leukemia, 2021, 35, 2299-2310.	7.2	17
11	Slc20a1b is essential for hematopoietic stem/progenitor cell expansion in zebrafish. Science China Life Sciences, 2021, 64, 2186-2201.	4.9	4
12	Irf2bp2a regulates terminal granulopoiesis through proteasomal degradation of Gfi1aa in zebrafish. PLoS Genetics, 2021, 17, e1009693.	3 . 5	4
13	Genetic and epigenetic orchestration of Gfi1aa-Lsd1- <i>cebpα</i> in zebrafish neutrophil development. Development (Cambridge), 2021, 148, .	2.5	3
14	Chemical screening reveals Ronidazole is a superior pro-drug to Metronidazole for Nitroreductase-induced cell ablation system in zebrafish larvae. Journal of Genetics and Genomics, 2021, 48, 1081-1081.	3.9	11
15	The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway. Cell Death and Disease, 2021, 12, 906.	6. 3	5
16	Gfilaa/Lsdl Facilitates Hemangioblast Differentiation Into Primitive Erythrocytes by Targeting etv2 and sox7 in Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 786426.	3.7	1
17	Interferon regulatory factor 2 binding protein 2b regulates neutrophil <i>versus</i> macrophage fate during zebrafish definitive myelopoiesis. Haematologica, 2020, 105, 325-337.	3 . 5	9
18	The NOTCH1-dependent HIF1 $\hat{l}\pm$ /VGLL4/IRF2BP2 oxygen sensing pathway triggers erythropoiesis terminal differentiation. Redox Biology, 2020, 28, 101313.	9.0	13

#	Article	IF	Citations
19	Human BCR/ABL1 induces chronic myeloid leukemia-like disease in zebrafish. Haematologica, 2020, 105, 674-686.	3.5	16
20	Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Research, 2020, 30, 118-126.	5.5	32
21	Macrophage-Derived IL-1β Regulates Emergency Myelopoiesis via the NF-κB and C/ebpβ in Zebrafish. Journal of Immunology, 2020, 205, 2694-2706.	0.8	9
22	The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies. Journal of Genetics and Genomics, 2020, 47, 535-546.	3.9	6
23	Zebrafish for thrombocytopoiesis- and hemostasis-related researches and disorders. Blood Science, 2020, 2, 44-49.	0.9	2
24	Keto-salicylaldehyde azine: a kind of novel building block for AlEgens and its application in tracking lipid droplets. Materials Chemistry Frontiers, 2020, 4, 3094-3102.	5.9	11
25	A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. Chemosphere, 2019, 235, 1050-1058.	8.2	23
26	Establishment of a zebrafish hematological disease model induced by 1,4-benzoquinone. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	5
27	Rb1 promotes T cell maturation from premature apoptosis by inhibiting E2F1. Development (Cambridge), 2018, 145, .	2.5	8
28	Role of neurexin2a in lead-induced locomotor defect in developing zebrafish. Aquatic Toxicology, 2018, 194, 167-175.	4.0	12
29	Alas1 is essential for neutrophil maturation in zebrafish. Haematologica, 2018, 103, 1785-1795.	3. 5	12
30	Loss of $\langle i \rangle$ runx1 $\langle i \rangle$ function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biology, 2018, 8, .	3.6	11
31	Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish. Environmental Toxicology and Chemistry, 2017, 36, 2147-2154.	4.3	55
32	Zebrafish nephrosin helps host defence against <i>Escherichia coli</i> infection. Open Biology, 2017, 7, 170040.	3.6	22
33	Establishment of a congenital amegakaryocytic thrombocytopenia model and a thrombocyte–specific reporter line in zebrafish. Leukemia, 2017, 31, 1206-1216.	7.2	24
34	c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. Blood, 2016, 128, 415-426.	1.4	27
35	Zebrafish Cdh5 negatively regulates mobilization of aorta-gonad-mesonephros-derived hematopoietic stem cells. Journal of Genetics and Genomics, 2016, 43, 613-616.	3.9	0
36	Cebpî \pm is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish. Journal of Genetics and Genomics, 2016, 43, 593-600.	3.9	17

#	Article	IF	Citations
37	Zebrafish as a model for studying the developmental neurotoxicity of propofol. Journal of Applied Toxicology, 2015, 35, 1511-1519.	2.8	40
38	Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. Blood, 2015, 125, 2974-2984.	1.4	23
39	Ozone promotes regeneration by regulating the inflammatory response in zebrafish. International Immunopharmacology, 2015, 28, 369-375.	3.8	11
40	High fat plus high cholesterol diet lead to hepatic steatosis in zebrafish larvae: a novel model for screening anti-hepatic steatosis drugs. Nutrition and Metabolism, 2015, 12, 42.	3.0	74
41	Myeloperoxidase-deficient zebrafish show an augmented inflammatory response to challenge with Candida albicans. Fish and Shellfish Immunology, 2015, 44, 109-116.	3.6	23
42	An overview of chronic myeloid leukemia and its animal models. Science China Life Sciences, 2015, 58, 1202-1208.	4.9	8
43	Functions of flt3 in zebrafish hematopoiesis and its relevance to human acute myeloid leukemia. Blood, 2014, 123, 2518-2529.	1.4	51
44	Suppression of Pu.1 function results in expanded myelopoiesis in zebrafish. Leukemia, 2013, 27, 1913-1917.	7.2	19
45	BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6205-6210.	7.1	291
46	Large-Scale Forward Genetic Screening Analysis of Development of Hematopoiesis in Zebrafish. Journal of Genetics and Genomics, 2012, 39, 473-480.	3.9	16
47	Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Molecular Biology Reports, 2012, 39, 4627-4633.	2.3	24
48	cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. Blood, 2011, 118, 4093-4101.	1.4	74
49	OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Molecular Biology, 2011, 76, 145-156.	3.9	133
50	A large insert Thellungiella halophila BIBAC library for genomics and identification of stress tolerance genes. Plant Molecular Biology, 2010, 72, 91-99.	3.9	17
51	An efficient system to detect protein ubiquitination by agroinfiltration in <i>Nicotiana benthamiana</i>). Plant Journal, 2010, 61, 893-903.	5.7	268
52	Up-regulation of <i>LSB1 </i> / <i>GDU3 </i> /i> affects geminivirus infection by activating the salicylic acid pathway. Plant Journal, 2010, 62, 12-23.	5.7	67
53	Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Research, 2009, 19, 1279-1290.	12.0	354
54	Structural analysis of 83-kb genomic DNA from Thellungiella halophila: Sequence features and microcolinearity between salt cress and Arabidopsis thaliana. Genomics, 2009, 94, 324-332.	2.9	10

#	Article	IF	Citations
55	Comparison Analysis of Transcripts from the Halophyte <i>Thellungiella halophila </i> Journal of Integrative Plant Biology, 2008, 50, 1327-1335.	8.5	50
56	COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability. Molecular Cell, 2008, 32, 617-630.	9.7	330
57	Targeted Degradation of the Cyclin-Dependent Kinase Inhibitor ICK4/KRP6 by RING-Type E3 Ligases Is Essential for Mitotic Cell Cycle Progression during <i>Arabidopsis</i> Gametogenesis Å. Plant Cell, 2008, 20, 1538-1554.	6.6	142
58	SDIR1 Is a RING Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in Arabidopsis. Plant Cell, 2007, 19, 1912-1929.	6.6	342
59	Knockout of the AtCESA2 Gene Affects Microtubule Orientation and Causes Abnormal Cell Expansion in Arabidopsis. Plant Physiology, 2007, 143, 213-224.	4.8	62
60	Comparative expression analysis of three genes from the Arabidopsis vacuolar Na+/H+ antiporter (AtNHX) family in relation to abiotic stresses. Science Bulletin, 2007, 52, 1754-1763.	1.7	11
61	The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8281-8286.	7.1	585
62	An Efficient Method to Screen for Salt Tolerance Genes in Salt Cress., 0,,.		0