Yuying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6894082/publications.pdf

Version: 2024-02-01

488211 535685 1,060 42 17 31 citations h-index g-index papers 43 43 43 1428 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hydroxysafflor Yellow A - An Important Natural Pigment for Treating Metabolic Diseases. Food Reviews International, 2023, 39, 3676-3690.	4.3	1
2	Wheat bran, as the resource of dietary fiber: a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 7269-7281.	5.4	33
3	Advanced glycation end products in food and their effects on intestinal tract. Critical Reviews in Food Science and Nutrition, 2022, 62, 3103-3115.	5.4	38
4	A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. Phytomedicine, 2022, 95, 153862.	2.3	7
5	Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization. International Journal of Biological Macromolecules, 2022, 194, 993-1001.	3.6	5
6	The Influence of Water-Unextractable Arabinoxylan and Its Hydrolysates on the Aggregation and Structure of Gluten Proteins. Frontiers in Nutrition, 2022, 9, 877135.	1.6	1
7	l-Arabinose improves hypercholesterolemia via regulating bile acid metabolism in high-fat-high-sucrose diet-fed mice. Nutrition and Metabolism, 2022, 19, 30.	1.3	2
8	Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Reports, 2022, 23, .	2.0	3
9	<scp>I</scp> -Arabinose suppresses gluconeogenesis through modulating AMP-activated protein kinase in metabolic disorder mice. Food and Function, 2021, 12, 1745-1756.	2.1	10
10	Effects of cereal fibers on short-chain fatty acids in healthy subjects and patients: a meta-analysis of randomized clinical trials. Food and Function, 2021, 12, 7040-7053.	2.1	6
11	Oat Î ² -glucan alleviates DSS-induced colitis <i>via</i> regulating gut microbiota metabolism in mice. Food and Function, 2021, 12, 8976-8993.	2.1	33
12	miR- 130 b inhibits proliferation and promotes differentiation in myocytes via targeting Sp 1 . Journal of Molecular Cell Biology, 2021, 13, 422-432.	1.5	4
13	<scp> </scp> -Arabinose Attenuates Gliadin-Induced Food Allergy via Regulation of Th1/Th2 Balance and Upregulation of Regulatory T Cells in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 3638-3646.	2.4	17
14	Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends in Food Science and Technology, 2021, 109, 513-526.	7.8	10
15	Highland barley tea represses palmitic acid-induced apoptosis and mitochondrial dysfunction via regulating AMPK/SIRT3/FoxO3a in myocytes. Food Bioscience, 2021, 40, 100893.	2.0	14
16	Interactions between gluten and water-unextractable arabinoxylan during the thermal treatment. Food Chemistry, 2021, 345, 128785.	4.2	29
17	Comparison of Different Soluble Dietary Fibers during the <i>In Vitro</i> Fermentation Process. Journal of Agricultural and Food Chemistry, 2021, 69, 7446-7457.	2.4	22
18	Systematic assessment of oat \hat{l}^2 -glucan catabolism during in vitro digestion and fermentation. Food Chemistry, 2021, 348, 129116.	4.2	29

#	Article	IF	CITATIONS
19	Source of gut microbiota determines oat \hat{l}^2 -glucan degradation and short chain fatty acid-producing pathway. Food Bioscience, 2021, 41, 101010.	2.0	18
20	Novel Metabolic Regulation of Bile Acid Responses to Low Cholesterol in Whole-Grain-Diet-Fed Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 8440-8447.	2.4	11
21	miRâ€183 and miRâ€96 orchestrate both glucose and fat utilization in skeletal muscle. EMBO Reports, 2021, 22, e52247.	2.0	7
22	Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 2021, 89, 111230.	1.1	23
23	Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics, 2021, 11, 8283-8300.	4.6	10
24	Geniposide suppresses thermogenesis via regulating PKA catalytic subunit in adipocytes. Toxicology, 2021, 464, 153014.	2.0	2
25	Hydroxysafflor Yellow A Alters Fuel Selection From Glucose to Fat by Activating the PPARδPathway in Myocytes. Journal of Agricultural and Food Chemistry, 2021, 69, 13838-13848.	2.4	1
26	Geniposide reduces cholesterol accumulation and increases its excretion by regulating the FXR-mediated liver-gut crosstalk of bile acids. Pharmacological Research, 2020, 152, 104631.	3.1	34
27	Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends in Food Science and Technology, 2020, 96, 157-165.	7.8	71
28	Circulating miR-27a-3p as a candidate for a biomarker of whole grain diets for lipid metabolism. Food and Function, 2020, 11, 8852-8865.	2.1	7
29	Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nature Communications, 2020, 11, 2725.	5.8	23
30	Characterization of promising natural blue pigment from Vaccinium bracteatum thunb. leaves: Insights of the stability and the inhibition of α-amylase. Food Chemistry, 2020, 326, 126962.	4.2	12
31	<scp>I</scp> -Arabinose Inhibits Colitis by Modulating Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 13299-13306.	2.4	43
32	Phosphorylation and Enzymatic Hydrolysis with Alcalase and Papain Effectively Reduce Allergic Reactions to Gliadins in Normal Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 6313-6323.	2.4	41
33	Physiological functionalities and mechanisms of \hat{l}^2 -glucans. Trends in Food Science and Technology, 2019, 88, 57-66.	7.8	108
34	Geniposide Improves Glucose Homeostasis via Regulating FoxO1/PDK4 in Skeletal Muscle. Journal of Agricultural and Food Chemistry, 2019, 67, 4483-4492.	2.4	23
35	Effect of selected strains on physical and organoleptic properties of breads. Food Chemistry, 2019, 276, 547-553.	4.2	14
36	microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10849-E10858.	3.3	96

Yuying Li

#	Article	IF	CITATION
37	Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. Journal of Agricultural and Food Chemistry, 2018, 66, 5802-5811.	2.4	14
38	Metabolic benefits of inhibition of p38 \hat{i} ± in white adipose tissue in obesity. PLoS Biology, 2018, 16, e2004225.	2.6	27
39	miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle. Cell Reports, 2016, 16, 757-768.	2.9	51
40	Hypoxia-inducible miR-182 enhances HIF1 \hat{l}_{\pm} signaling via targeting PHD2 and FIH1 in prostate cancer. Scientific Reports, 2015, 5, 12495.	1.6	74
41	Thyroid hormone regulates muscle fiber type conversion via miR-133a1. Journal of Cell Biology, 2014, 207, 753-766.	2.3	83
42	Hydroxysafflor yellow A triggered a fast-to-slow muscle fiber-type conversion <i>via</i> regulating FoxO1 in myocytes. Food and Function, 0, , .	2.1	1