Jhamak Nourmohammadi Kouhanestan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893877/publications.pdf

Version: 2024-02-01

45 papers

1,663 citations

236925 25 h-index 289244 40 g-index

46 all docs 46 docs citations

46 times ranked

2264 citing authors

#	Article	IF	CITATIONS
1	Surface modification of titanium implants via electrospinning of sericin and <i>Equisetum arvense</i> enhances the osteogenic differentiation of stem cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1025-1036.	3.4	4
2	Coating of <scp>3D</scp> â€printed <scp>poly (εâ€caprolactone)</scp> scaffolds with silk protein sericin enhances the osteogenic differentiation of human mesenchymal stem cells. Polymers for Advanced Technologies, 2022, 33, 1211-1221.	3.2	4
3	Carboxymethyl carrageenan immobilized on 3D-printed polycaprolactone scaffold for the adsorption of calcium phosphate/strontium phosphate adapted to bone regeneration. International Journal of Biological Macromolecules, 2022, 206, 861-874.	7.5	9
4	Osteogenesis capability of three-dimensionally printed poly(lactic acid)-halloysite nanotube scaffolds containing strontium ranelate. Nanotechnology Reviews, 2022, 11, 1901-1910.	5.8	24
5	Gallic acid-grafted hybrid strontium fluoride/polycaprolactone nanocomposite fibers for bone regeneration. Progress in Organic Coatings, 2022, 170, 106976.	3.9	3
6	Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. International Journal of Biological Macromolecules, 2022, 216, 605-617.	7.5	7
7	Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 392-402.	3.4	15
8	Capability of core-sheath polyvinyl alcohol–polycaprolactone emulsion electrospun nanofibrous scaffolds in releasing strontium ranelate for bone regeneration. Biomedical Materials (Bristol), 2021, 16, 025009.	3.3	13
9	Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. International Journal of Biological Macromolecules, 2021, 173, 351-365.	7.5	67
10	Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. International Journal of Pharmaceutics, 2021, 610, 121227.	5.2	22
11	Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 173-185.	3.4	58
12	HHC-36 antimicrobial peptide loading on silk fibroin (SF)/hydroxyapatite (HA) nanofibrous-coated titanium for the enhancement of osteoblast and bactericidal functions. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 629-639.	3.4	30
13	Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. International Journal of Biological Macromolecules, 2020, 147, 1239-1247.	7.5	100
14	Silk based scaffolds with immunomodulatory capacity: anti-inflammatory effects of nicotinic acid. Biomaterials Science, 2020, 8, 148-162.	5.4	18
15	Effect of SrR delivery in the biomarkers of bone regeneration during the in vitro degradation of HNT/GN coatings prepared by EPD. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110944.	5.0	23
16	Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomaterialia, 2020, 113, 144-163.	8.3	43
17	Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin. International Journal of Biological Macromolecules, 2020, 153, 317-326.	7.5	39
18	Physicochemical and Antibacterial Characterization of Nanofibrous Wound Dressing from Silk Fibroin-polyvinyl Alcohol- Elaeagnus Angustifolia Extract. Fibers and Polymers, 2020, 21, 456-464.	2.1	22

#	Article	lF	CITATIONS
19	Chitosan-PVA-CNT nanofibers as electrically conductive scaffolds for cardiovascular tissue engineering. International Journal of Biological Macromolecules, 2019, 140, 278-287.	7.5	127
20	Hyaluronic acid/ carboxylated Zeolitic Imidazolate Framework film with improved mechanical and antibacterial properties. Carbohydrate Polymers, 2019, 222, 115033.	10.2	51
21	Polyvinylidene fluoride–Hyaluronic acid wound dressing comprised of ionic liquids for controlled drug delivery and dual therapeutic behavior. Acta Biomaterialia, 2019, 100, 142-157.	8.3	45
22	Electrospun core-sheath poly(vinyl alcohol)/silk fibroin nanofibers with Rosuvastatin release functionality for enhancing osteogenesis of human adipose-derived stem cells. Materials Science and Engineering C, 2019, 99, 129-139.	7.3	45
23	An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. International Journal of Biological Macromolecules, 2019, 133, 795-803.	7.5	26
24	Poly (sodium 4-styrene sulfonate)-modified hydroxyapatite nanoparticles in zein-based scaffold as a drug carrier for vancomycin. Materials Science and Engineering C, 2019, 100, 874-885.	7.3	28
25	<i>In vitro</i> comparative investigation of bioactivity and biocompatibility behavior of titanium nano-composites fabricated by friction stir processing. Materials Research Express, 2019, 6, 125425.	1.6	1
26	Comparative study of the properties of sericin-gelatin nanofibrous wound dressing containing halloysite nanotubes loaded with zinc and copper ions. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 1142-1153.	3.4	26
27	Osteogenic potential of Rosuvastatin immobilized on silk fibroin nanofibers using argon plasma treatment. Biomedical Materials (Bristol), 2019, 14, 025002.	3.3	14
28	Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids and Surfaces B: Biointerfaces, 2018, 166, 9-16.	5.0	78
29	Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. European Polymer Journal, 2018, 103, 40-50.	5.4	27
30	The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. International Journal of Biological Macromolecules, 2018, 107, 2008-2019.	7.5	144
31	Biocompatibility and bioactivity behaviour of coelectrospun silk fibroinâ€hydroxyapatite nanofibres using formic acid. Micro and Nano Letters, 2018, 13, 709-713.	1.3	4
32	Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Colloids and Surfaces B: Biointerfaces, 2018, 172, 82-89.	5.0	72
33	Synthesis of poly($\hat{l}\mu$ -caprolactone)-based polyurethane semi-interpenetrating polymer networks as scaffolds for skin tissue regeneration. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 805-811.	3.4	31
34	Silk fibroin/kappa-carrageenan composite scaffolds with enhanced biomimetic mineralization for bone regeneration applications. Materials Science and Engineering C, 2017, 76, 951-958.	7.3	60
35	Novel chitosan-sulfonated chitosan-polycaprolactone-calcium phosphate nanocomposite scaffold. Carbohydrate Polymers, 2017, 157, 695-703.	10.2	63
36	How direct electrospinning in methanol bath affects the physicoâ€chemical and biological properties of silk fibroin nanofibrous scaffolds. Micro and Nano Letters, 2016, 11, 514-517.	1.3	17

#	Article	IF	CITATIONS
37	Fabrication and characterization of carboxylated starch-chitosan bioactive scaffold for bone regeneration. International Journal of Biological Macromolecules, 2016, 93, 1069-1078.	7.5	49
38	Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications. Starch/Staerke, 2016, 68, 1275-1281.	2.1	11
39	Preparation, characterization, and silanization of 3D microporous PDMS structure with properly sized pores for endothelial cell culture. Biotechnology and Applied Biochemistry, 2016, 63, 190-199.	3.1	42
40	Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydrate Polymers, 2016, 138, 172-179.	10.2	49
41	Composite of porous starch-silk fibroin nanofiber-calcium phosphate for bone regeneration. Ceramics International, 2015, 41, 10745-10754.	4.8	78
42	Fabrication and characterization of electrospun poly- L -lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering. Progress in Natural Science: Materials International, 2015, 25, 405-413.	4.4	31
43	In vitro bioactivity of novel cured ionomer cement based on iron oxide. Ceramics International, 2010, 36, 1645-1651.	4.8	13
44	Bone-like apatite layer formation on the new resin-modified glass-ionomer cement. Journal of Materials Science: Materials in Medicine, 2008, 19, 3507-3514.	3.6	23
45	Dissolution behavior and fluoride release from new glass composition used in glass ionomer cements. Ceramics International, 2007, 33, 557-561.	4.8	5