Mara Regina Moitinho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil CO2 emission and short-term soil pore class distribution after tillage operations. Soil and Tillage Research, 2019, 186, 224-232.	5.6	44

 $_2$ On the spatial and temporal dependence of CO2 emission on soil properties in sugarcane (Saccharum) Tj ETQq0 0 $_{0.031}^{0.02}$ rgBT /Overlock 10 T

3	Efeito do preparo do solo e resÃduo da colheita de cana-de-açúcar sobre a emissão de CO2. Revista Brasileira De Ciencia Do Solo, 2013, 37, 1720-1728.	1.3	26
4	Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO2 emission. Science of the Total Environment, 2019, 686, 413-424.	8.0	21
5	For how long does the quality and quantity of residues in the soil affect the carbon compartments and CO2-C emissions?. Journal of Soils and Sediments, 2016, 16, 2354-2364.	3.0	19
6	Greenhouse gas emissions in conversion from extensive pasture to other agricultural systems in the Andean region of Colombia. Environment, Development and Sustainability, 2019, 21, 249-262.	5.0	14
7	Crop rotation and succession in a no-tillage system: Implications for CO2 emission and soil attributes. Journal of Environmental Management, 2019, 245, 8-15.	7.8	13
8	Arbuscular mycorrhizal fungi and soil aggregation in a noâ€ŧillage system with crop rotation. Journal of Plant Nutrition and Soil Science, 2020, 183, 482-491.	1.9	13
9	Effects of burned and unburned sugarcane harvesting systems on soil CO2 emission and soil physical, chemical, and microbiological attributes. Catena, 2021, 196, 104903.	5.0	12
10	Ratio of CO2 and O2 as index for categorising soil biological activity in sugarcane areas under contrasting straw management regimes. Soil Research, 2018, 56, 373.	1.1	11
11	Soil carbon dioxide emission associated with soil porosity after sugarcane field reform. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 113-127.	2.1	11
12	Avoiding burning practice and its consequences on the greenhouse gas emission in sugarcane areas southern Brazil. Environmental Science and Pollution Research, 2022, 29, 719-730.	5.3	10
13	Soil Factors Influencing Nematode Spatial Variability in Soybean. Agronomy Journal, 2017, 109, 610-619.	1.8	9
14	Soil Greenhouse Gases: Relations to Soil Attributes in a Sugarcane Production Area. Soil Science Society of America Journal, 2017, 81, 1168-1178.	2.2	7
15	Crop rotation and sequence effects on temporal variation of CO2 emissions after long-term no-till application. Science of the Total Environment, 2020, 709, 136107.	8.0	6
16	Soil CO2 emission and soil attributes associated with the microbiota of a sugarcane area in southern Brazil. Scientific Reports, 2021, 11, 8325.	3.3	6
17	Can Partial Cultivation of Only The Sugarcane Row Reduce Carbon Dioxide Emissions in an Oxisol and Ultisol?. Agronomy Journal, 2017, 109, 1113-1121.	1.8	5
18	SPATIAL UNCERTAINTY OF NUTRIENT LOSS BY EROSION IN SUGARCANE HARVESTING SCENARIOS. Revista Brasileira De Ciencia Do Solo, 2015, 39, 1181-1189.	1.3	4

#	Article	IF	CITATIONS
19	Short-Term Soil CO2 Emission and Soil Attributes Under Contrasting Sugarcane Cultivars. Sugar Tech, 2018, 20, 658-668.	1.8	3
20	Shortâ€ŧerm spatiotemporal variation of soil CO 2 emission, temperature, moisture and aeration in sugarcane field reform areas under the influence of precipitation events. Soil Use and Management, 2020, 36, 658-670.	4.9	3
21	Soil carbon stock estimations: methods and a case study of the Maranhão State, Brazil. Environment, Development and Sustainability, 2021, 23, 16410-16427.	5.0	2
22	ARBUSCULAR MYCORRHIZAL FUNGI ON THE INITIAL GROWTH AND NUTRITION OF Parkia Platycephala BENTH. UNDER WATER STRESS. Cerne, 2020, 26, 66-74.	0.9	2
23	Associative diazotrophic bacteria inoculated in sugarcane cultivars: implications on morphophysiological attributes and plant nutrition. Revista Brasileira De Ciencia Do Solo, 2020, 44, .	1.3	1