
Giorgio G Galli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hippo Pathway Activity Influences Liver Cell Fate. Cell, 2014, 157, 1324-1338.	28.9	683
2	Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell, 2017, 170, 577-592.e10.	28.9	506
3	The landscape of cancer cell line metabolism. Nature Medicine, 2019, 25, 850-860.	30.7	350
4	YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Molecular Cell, 2015, 60, 328-337.	9.7	228
5	PRDM proteins: Important players in differentiation and disease. BioEssays, 2012, 34, 50-60.	2.5	169
6	Yap reprograms glutamine metabolism to increase nucleotide biosynthesis and enable liver growth. Nature Cell Biology, 2016, 18, 886-896.	10.3	168
7	The Hippo Transducer YAP1 Transforms Activated Satellite Cells and Is a Potent Effector of Embryonal Rhabdomyosarcoma Formation. Cancer Cell, 2014, 26, 273-287.	16.8	152
8	Mammalian SWI/SNF continuously restores local accessibility to chromatin. Nature Genetics, 2021, 53, 279-287.	21.4	106
9	NUAK2 is a critical YAP target in liver cancer. Nature Communications, 2018, 9, 4834.	12.8	88
10	Yap regulates glucose utilization and sustains nucleotide synthesis to enable organ growth. EMBO Journal, 2018, 37, .	7.8	73
11	PAX8 activates metabolic genes via enhancer elements in Renal Cell Carcinoma. Nature Communications, 2019, 10, 3739.	12.8	49
12	Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone. PLoS Genetics, 2012, 8, e1002711.	3.5	48
13	Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells. Molecular and Cellular Biology, 2013, 33, 4504-4516.	2.3	29
14	PAX8 and MECOM are interaction partners driving ovarian cancer. Nature Communications, 2021, 12, 2442.	12.8	29
15	Identification of the HECT E3 ligase UBR5 as a regulator of MYC degradation using a CRISPR/Cas9 screen. Scientific Reports, 2020, 10, 20044.	3.3	24
16	p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. Journal of Cell Biology, 2018, 217, 3183-3201.	5.2	21
17	A CRISPR-Cas9 screen identifies essential CTCF anchor sites for estrogen receptor-driven breast cancer cell proliferation. Nucleic Acids Research, 2019, 47, 9557-9572.	14.5	21
18	Systematic dissection of transcriptional regulatory networks by genome-scale and single-cell CRISPR screens. Science Advances, 2021, 7, .	10.3	19

GIORGIO G GALLI

#	Article	IF	CITATIONS
19	A role for repressive complexes and H3K9 di-methylation in PRDM5-associated brittle cornea syndrome. Human Molecular Genetics, 2015, 24, 6565-6579.	2.9	17
20	Therapeutic Assessment of Targeting ASNS Combined with <scp>l</scp> -Asparaginase Treatment in Solid Tumors and Investigation of Resistance Mechanisms. ACS Pharmacology and Translational Science, 2021, 4, 327-337.	4.9	13
21	Structure of the MRAS–SHOC2–PP1C phosphatase complex. Nature, 2022, 609, 416-423.	27.8	11
22	PAX8 lineage-driven TÂcell engaging antibody for the treatment of high-grade serous ovarian cancer. Scientific Reports, 2021, 11, 14841.	3.3	4