
Ding Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893506/publications.pdf Version: 2024-02-01

DINC 7HAO

#	Article	IF	CITATIONS
1	Accelerated Evaluation of Automated Vehicles Safety in Lane-Change Scenarios Based on Importance Sampling Techniques. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 595-607.	4.7	237
2	Accelerated Evaluation of Automated Vehicles in Car-Following Maneuvers. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 733-744.	4.7	124
3	Intelligent and connected vehicles: Current status and future perspectives. Science China Technological Sciences, 2018, 61, 1446-1471.	2.0	114
4	Driving Style Analysis Using Primitive Driving Patterns With Bayesian Nonparametric Approaches. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2986-2998.	4.7	92
5	A Learning-Based Approach for Lane Departure Warning Systems With a Personalized Driver Model. IEEE Transactions on Vehicular Technology, 2018, 67, 9145-9157.	3.9	88
6	Learning and Inferring a Driver's Braking Action in Car-Following Scenarios. IEEE Transactions on Vehicular Technology, 2018, 67, 3887-3899.	3.9	71
7	How Much Data is Enough? A Statistical Approach with Case Study on Longitudinal Driving Behavior. IEEE Transactions on Intelligent Vehicles, 2017, , 1-1.	9.4	52
8	Extracting Traffic Primitives Directly From Naturalistically Logged Data for Self-Driving Applications. IEEE Robotics and Automation Letters, 2018, 3, 1223-1229.	3.3	47
9	Empirical Study of DSRC Performance Based on Safety Pilot Model Deployment Data. IEEE Transactions on Intelligent Transportation Systems, 2017, 18, 2619-2628.	4.7	45
10	Accelerated Evaluation of Automated Vehicles Using Piecewise Mixture Models. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 2845-2855.	4.7	37
11	Learning to Collide: An Adaptive Safety-Critical Scenarios Generating Method. , 2020, , .		37
12	Evaluation of Lane Departure Correction Systems Using a Regenerative Stochastic Driver Model. IEEE Transactions on Intelligent Vehicles, 2017, 2, 221-232.	9.4	36
13	Eco-Trajectory Planning with Consideration of Queue along Congested Corridor for Hybrid Electric Vehicles. Transportation Research Record, 2019, 2673, 277-286.	1.0	35
14	TrafficNet: An open naturalistic driving scenario library. , 2017, , .		34
15	Highway Exiting Planner for Automated Vehicles Using Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 990-1000.	4.7	30
16	Clustering of Driving Encounter Scenarios Using Connected Vehicle Trajectories. IEEE Transactions on Intelligent Vehicles, 2020, 5, 485-496.	9.4	29
17	Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation. IEEE Robotics and Automation Letters, 2021, 6, 1551-1558.	3.3	25
18	Accelerated Evaluation of Autonomous Vehicles in the Lane Change Scenario Based on Subset Simulation Technique. , 2018, , .		22

Ding Zhao

#	Article	IF	CITATIONS
19	Improving Localization Accuracy in Connected Vehicle Networks Using Rao–Blackwellized Particle Filters: Theory, Simulations, and Experiments. IEEE Transactions on Intelligent Transportation Systems, 2019, 20, 2255-2266.	4.7	22
20	Gap Acceptance During Lane Changes by Large-Truck Drivers—An Image-Based Analysis. IEEE Transactions on Intelligent Transportation Systems, 2016, 17, 772-781.	4.7	17
21	A Multi-Vehicle Trajectories Generator to Simulate Vehicle-to-Vehicle Encountering Scenarios. , 2019, ,		16
22	A Versatile Approach to Evaluating and Testing Automated Vehicles based on Kernel Methods. , 2018, , .		14
23	Cluster Naturalistic Driving Encounters Using Deep Unsupervised Learning. , 2018, , .		14
24	Modeling Multi-Vehicle Interaction Scenarios Using Gaussian Random Field. , 2019, , .		14
25	Where Should We Place LiDARs on the Autonomous Vehicle? - An Optimal Design Approach. , 2019, , .		13
26	Advanced Driver Assistance Strategies for a Single-Vehicle Overtaking a Platoon on the Two-Lane Two-Way Road. IEEE Access, 2020, 8, 77285-77297.	2.6	12
27	Towards affordable on-track testing for autonomous vehicle — A Kriging-based statistical approach. , 2017, , .		11
28	Evaluation Uncertainty in Data-Driven Self-Driving Testing. , 2019, , .		10
29	Accelerated Evaluation of Automated Vehicles in Lane Change Scenarios. , 2015, , .		9
30	Rare-event Simulation for Neural Network and Random Forest Predictors. ACM Transactions on Modeling and Computer Simulation, 2022, 32, 1-33.	0.6	9
31	SAnE: Smart Annotation and Evaluation Tools for Point Cloud Data. IEEE Access, 2020, 8, 131848-131858.	2.6	8
32	Sequential experimentation to efficiently test automated vehicles. , 2017, , .		7
33	The Impact of Road Configuration in V2V-Based Cooperative Localization: Mathematical Analysis and Real-World Evaluation. IEEE Transactions on Intelligent Transportation Systems, 2018, 19, 3220-3229.	4.7	7
34	Understanding V2V Driving Scenarios Through Traffic Primitives. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 610-619.	4.7	7
35	How to Evaluate Proving Grounds for Self-Driving? A Quantitative Approach. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 5737-5748.	4.7	7
36	Evaluation of the Energy Efficiency in a Mixed Traffic with Automated Vehicles and Human Controlled Vehicles. , 2018, , .		6

Ding Zhao

#	Article	IF	CITATIONS
37	An Accelerated Approach to Safely and Efficiently Test Pre-Production Autonomous Vehicles on Public Streets. , 2018, , .		6
38	A General Framework of Learning Multi-Vehicle Interaction Patterns from Video. , 2019, , .		5
39	Combining Reachability Analysis and Importance Sampling for Accelerated Evaluation of Highway Automated Vehicles at Pedestrian Crossing. ASME Letters in Dynamic Systems and Control, 2021, 1, .	0.4	5
40	RARE-EVENT SIMULATION WITHOUT STRUCTURAL INFORMATION: A LEARNING-BASED APPROACH. , 2018, , .		4
41	A Tempt to Unify Heterogeneous Driving Databases using Traffic Primitives. , 2018, , .		4
42	DESIGNING IMPORTANCE SAMPLERS TO SIMULATE MACHINE LEARNING PREDICTORS VIA OPTIMIZATION. , 2018, , .		3
43	Energy Efficiency and Emission Testing for Connected and Automated Vehicles Using Real-World Driving Data. , 2018, , .		3
44	Optimization of vehicle connections in V2V-based cooperative localization. , 2017, , .		2
45	Robust unsupervised learning of temporal dynamic vehicle-to-vehicle interactions. Transportation Research Part C: Emerging Technologies, 2022, 142, 103768.	3.9	2