List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893186/publications.pdf Version: 2024-02-01

FANCYL CHENC

#	Article	IF	CITATIONS
1	Biaxial strained dual-phase palladium-copper bimetal boosts formic acid electrooxidation. Nano Research, 2022, 15, 280-284.	5.8	19
2	Multidimensional Nonstoichiometric Electrode Materials for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100640.	10.2	25
3	Defective high-entropy rocksalt oxide with enhanced metal‒oxygen covalency for electrocatalytic oxygen evolution. Chinese Journal of Catalysis, 2022, 43, 122-129.	6.9	50
4	Building Homogenous Li ₂ TiO ₃ Coating Layer on Primary Particles to Stabilize Liâ€Rich Mnâ€Based Cathode Materials. Small, 2022, 18, e2106337.	5.2	42
5	In Situ Confined Growth of Bismuth Nanoribbons with Active and Robust Edge Sites for Boosted CO ₂ Electroreduction. ACS Energy Letters, 2022, 7, 1454-1461.	8.8	48
6	UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329.	6.6	14
7	Anionic formulation of electrolyte additive towards stable electrocatalytic oxygen evolution in seawater splitting. Journal of Energy Chemistry, 2022, 72, 361-369.	7.1	42
8	Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2022, 535, 231445.	4.0	33
9	Galvanicâ€Cell Deposition Enables the Exposure of Bismuth Grain Boundary for Efficient Electroreduction of Carbon Dioxide. Small, 2022, 18, e2201633.	5.2	12
10	Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives. Journal of the American Chemical Society, 2022, 144, 11129-11137.	6.6	196
11	Selective nitrogen doping on carbon cloth to enhance the performance of zinc anode. Chinese Chemical Letters, 2021, 32, 1095-1100.	4.8	22
12	Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43, 132-165.	8.3	174
13	<i>Operando</i> constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 11433-11441.	5.2	22
14	Growing Nanostructured CuO on Copper Foil via Chemical Etching to Upgrade Metallic Lithium Anode. ACS Applied Materials & Interfaces, 2021, 13, 6367-6374.	4.0	20
15	Vanadium-based cathodes for aqueous zinc-ion batteries: from crystal structures, diffusion channels to storage mechanisms. Journal of Materials Chemistry A, 2021, 9, 5258-5275.	5.2	103
16	The Electrochemical Tuning of Transition Metal-Based Materials for Electrocatalysis. Electrochemical Energy Reviews, 2021, 4, 146-168.	13.1	30
17	Electroless Formation of a Fluorinated Li/Na Hybrid Interphase for Robust Lithium Anodes. Journal of the American Chemical Society, 2021, 143, 2829-2837.	6.6	119
18	In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range. Journal of Power Sources, 2021, 487, 229369.	4.0	61

#	Article	IF	CITATIONS
19	Operando non-topological conversion constructing the high-performance nickel-zinc battery anode. Chemical Engineering Journal, 2021, 414, 128716.	6.6	11
20	Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation. Angewandte Chemie, 2021, 133, 17074-17078.	1.6	9
21	Regulating Electrocatalytic Oxygen Reduction Activity of a Metal Coordination Polymer via d–π Conjugation. Angewandte Chemie - International Edition, 2021, 60, 16937-16941.	7.2	74
22	Peering into few-layer black phosphorus nanosheets: from preparation to battery applications. JPhys Energy, 2021, 3, 032018.	2.3	2
23	Functional separator with a lightweight carbon-coating for stable, high-capacity organic lithium batteries. Chemical Engineering Journal, 2021, 418, 129404.	6.6	13
24	Concentration-Gradient LiNi _{0.85} Co _{0.12} Al _{0.03} O ₂ Cathode Assembled with Primary Particles for Rechargeable Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 13474-13482.	2.5	6
25	Enhancing LiNiO2 cathode materials by concentration-gradient yttrium modification for rechargeable lithium-ion batteries. Journal of Energy Chemistry, 2021, 63, 312-319.	7.1	18
26	Nanoporous NiSb to Enhance Nitrogen Electroreduction via Tailoring Competitive Adsorption Sites. Advanced Materials, 2021, 33, e2101126.	11.1	64
27	Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 419, 129619.	6.6	77
28	Stabilizing Zinc Electrodes with a Vanillin Additive in Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2021, 13, 47650-47658.	4.0	70
29	Electronic Structure Modulation of Nanoporous Cobalt Phosphide by Carbon Doping for Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials, 2021, 31, 2107333.	7.8	104
30	Boosting Electrocatalytic Oxygen Evolution by Cation Defect Modulation via Electrochemical Etching. CCS Chemistry, 2021, 3, 675-685.	4.6	63
31	Interfacial Engineering of Ni–Fe Based Electrocatalysts for Robust Oxygen Evolution. Journal of Physical Chemistry C, 2021, 125, 25383-25391.	1.5	3
32	Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte. Journal of Energy Chemistry, 2020, 42, 1-4.	7.1	20
33	Self‣upported Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e1806326.	11.1	986
34	Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 3554-3562.	4.0	36
35	Nanoporous Palladium Hydride for Electrocatalytic N ₂ Reduction under Ambient Conditions. Angewandte Chemie - International Edition, 2020, 59, 3511-3516.	7.2	182
36	Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries. Applied Catalysis B: Environmental, 2020, 264, 118537.	10.8	81

#	Article	IF	CITATIONS
37	Nanoporous Palladium Hydride for Electrocatalytic N ₂ Reduction under Ambient Conditions. Angewandte Chemie, 2020, 132, 3539-3544.	1.6	25
38	Hybrid Nanosheet Arrays: Boosting Activity on Co ₄ N Porous Nanosheet by Coupling CeO ₂ for Efficient Electrochemical Overall Water Splitting at High Current Densities (Adv. Funct. Mater. 32/2020). Advanced Functional Materials, 2020, 30, 2070213.	7.8	1
39	Coupling NiCo Alloy and CeO ₂ to Enhance Electrocatalytic Hydrogen Evolution in Alkaline Solution. Advanced Sustainable Systems, 2020, 4, 2000122.	2.7	36
40	Isolated diatomic Zn–Fe in N-doped carbon for electrocatalytic nitrogen reduction to ammonia. Chemical Communications, 2020, 56, 11957-11960.	2.2	43
41	Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 2020, 53, 1-11.	2.0	60
42	UV-Cured Interpenetrating Networks of Single-ion Conducting Polymer Electrolytes for Rechargeable Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 12532-12539.	2.5	20
43	Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 2020, 49, 4203-4219.	18.7	787
44	Synthesis and electrochemical properties of CeVO4/Fe3O4 as a novel anode material for lithium-ion batteries. Ionics, 2020, 26, 4859-4867.	1.2	12
45	Boosting Activity on Co ₄ N Porous Nanosheet by Coupling CeO ₂ for Efficient Electrochemical Overall Water Splitting at High Current Densities. Advanced Functional Materials, 2020, 30, 1910596.	7.8	218
46	Materials Science at Nankai: A Special Issue Dedicated to the 100th Anniversary of Nankai University. Advanced Materials, 2020, 32, e1907314.	11.1	0
47	Nonaqueous electrolyte with dual-cations for high-voltage and long-life zinc batteries. Journal of Materials Chemistry A, 2020, 8, 3252-3261.	5.2	89
48	Lithium bis(oxalate)borate additive in the electrolyte to improve Li-rich layered oxide cathode materials. Materials Chemistry Frontiers, 2020, 4, 1689-1696.	3.2	33
49	Facile synthesis of amorphous MoS _x –Fe anchored on Zr-MOFs towards efficient and stable electrocatalytic hydrogen evolution. Chemical Communications, 2020, 56, 2763-2766.	2.2	27
50	Nucleation Mechanism and Substrate Modification of Lithium Metal Anode. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	2.2	3
51	<i>In-situ</i> Li ₃ PO ₄ Coating of Li-Rich Mn-Based Cathode Materials for Lithium-ion Batteries. Acta Chimica Sinica, 2020, 78, 1426.	0.5	10
52	Electrodeposition of Pt-Decorated Ni(OH) ₂ /CeO ₂ Hybrid as Superior Bifunctional Electrocatalyst for Water Splitting. Research, 2020, 2020, 9068270.	2.8	19
53	Ultrafast Rechargeable Zinc Battery Based on High-Voltage Graphite Cathode and Stable Nonaqueous Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 32978-32986.	4.0	75
54	Synthesis of Ni/NiO@MIL-101(Cr) Composite as Novel Anode for Lithium-Ion Battery Application. Journal of Nanoscience and Nanotechnology, 2019, 19, 8063-8070.	0.9	11

#	Article	IF	CITATIONS
55	Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Science China Materials, 2019, 62, 1515-1536.	3.5	80
56	Mn-doped atomic SnO ₂ layers for highly efficient CO ₂ electrochemical reduction. Journal of Materials Chemistry A, 2019, 7, 19651-19656.	5.2	63
57	Tuning Oxygen Redox Chemistry in Liâ€Rich Mnâ€Based Layered Oxide Cathodes by Modulating Cation Arrangement. Advanced Materials, 2019, 31, e1901808.	11.1	86
58	Star Brush Block Copolymer Electrolytes with High Ambient-Temperature Ionic Conductivity for Quasi-Solid-State Lithium Batteries. , 2019, 1, 606-612.		32
59	Spinel/Lithiumâ€Rich Manganese Oxide Hybrid Nanofibers as Cathode Materials for Rechargeable Lithiumâ€Ion Batteries. Small Methods, 2019, 3, 1900350.	4.6	44
60	LiNi _{0.90} Co _{0.07} Mg _{0.03} O ₂ cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20958-20964.	5.2	54
61	Plasmon-promoted electrocatalytic water splitting on metal–semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Chemical Science, 2019, 10, 9605-9612.	3.7	50
62	Hydrated Layered Vanadium Oxide as a Highly Reversible Cathode for Rechargeable Aqueous Zinc Batteries. Advanced Functional Materials, 2019, 29, 1807331.	7.8	359
63	Ultrathin carbon-coated FeS ₂ nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6, 459-464.	3.0	21
64	Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical Science, 2019, 10, 1374-1379.	3.7	201
65	Promoted synergy in core-branch CoP@NiFe–OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting. Nano Energy, 2019, 63, 103821.	8.2	82
66	Surface modification of Li-rich manganese-based cathode materials by chemical etching. Inorganic Chemistry Frontiers, 2019, 6, 1694-1700.	3.0	24
67	Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 3028-3034.	2.5	81
68	Fire-Retardant Phosphate-Based Electrolytes for High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 2708-2716.	2.5	64
69	Direct Spectroscopy for Probing the Critical Role of Partial Covalency in Oxygen Reduction Reaction for Cobalt-Manganese Spinel Oxides. Nanomaterials, 2019, 9, 577.	1.9	28
70	Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24868-24876.	5.2	76
71	Controllable tuning of Fe-N nanosheets by Co substitution for enhanced oxygen evolution reaction. Nano Energy, 2019, 57, 644-652.	8.2	90
72	Epitaxial Heterogeneous Interfaces on Nâ€NiMoO ₄ /NiS ₂ Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting. Advanced Functional Materials, 2019, 29, 1805298.	7.8	378

#	Article	IF	CITATIONS
73	Combining Quinone Cathode and Ionic Liquid Electrolyte for Organic Sodium-Ion Batteries. CheM, 2019, 5, 364-375.	5.8	104
74	Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. Journal of Energy Chemistry, 2019, 38, 20-25.	7.1	225
75	Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery. Journal of Energy Chemistry, 2019, 38, 55-59.	7.1	26
76	Nanostructured NiMoO4 as active electrocatalyst for oxygen evolution. Chinese Chemical Letters, 2019, 30, 319-323.	4.8	55
77	Progress in DFT study on 3d transition metal oxide/hydroxide electrocatalyst for oxygen evolution. Scientia Sinica Chimica, 2019, 49, 741-751.	0.2	4
78	Uniform MnCo ₂ O ₄ Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8730-8738.	4.0	83
79	Super P Carbon Modified Lithium Anode for Highâ€Performance Liâ^'O ₂ Batteries. ChemElectroChem, 2018, 5, 1702-1707.	1.7	31
80	The structure–electrochemical property relationship of quinone electrodes for lithium-ion batteries. Physical Chemistry Chemical Physics, 2018, 20, 13478-13484.	1.3	59
81	Facile preparation of NH ₂ -functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 2494-2499.	5.2	149
82	Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal–Organic Anode Materials. ACS Applied Materials & Interfaces, 2018, 10, 6398-6406.	4.0	42
83	Ultrasmall Sn nanoparticles embedded in spherical hollow carbon for enhanced lithium storage properties. Chemical Communications, 2018, 54, 1205-1208.	2.2	60
84	Rechargeable aqueous zinc–iodine batteries: pore confining mechanism and flexible device application. Chemical Communications, 2018, 54, 6792-6795.	2.2	116
85	Mesoporous LiTi2(PO4)3/C composite with trace amount of carbon as high-performance electrode materials for lithium ion batteries. Journal of Alloys and Compounds, 2018, 749, 1019-1027.	2.8	9
86	Metallic CuCo2S4 nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn-air batteries. Nanoscale, 2018, 10, 6581-6588.	2.8	69
87	A review of transition-metal boride/phosphide-based materials for catalytic hydrogen generation from hydrolysis of boron-hydrides. Inorganic Chemistry Frontiers, 2018, 5, 760-772.	3.0	103
88	Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Research, 2018, 11, 3282-3293.	5.8	44
89	<i>In situ</i> synthesis of Bi nanoflakes on Ni foam for sodium-ion batteries. Chemical Communications, 2018, 54, 38-41.	2.2	89
90	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	1.3	8

#	Article	IF	CITATIONS
91	Co ₂ P–CoN Double Active Centers Confined in Nâ€Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting. Advanced Functional Materials, 2018, 28, 1805641.	7.8	443
92	FeS ₂ /CoS ₂ Interface Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small, 2018, 14, e1801070.	5.2	273
93	Rechargeable Aqueous Zn–V ₂ O ₅ Battery with High Energy Density and Long Cycle Life. ACS Energy Letters, 2018, 3, 1366-1372.	8.8	766
94	Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction. Advanced Materials, 2018, 30, e1802912.	11.1	338
95	N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2018, 353, 606-614.	6.6	93
96	Spent alkaline battery-derived manganese oxides as efficient oxygen electrocatalysts for Zn–air batteries. Inorganic Chemistry Frontiers, 2018, 5, 2167-2173.	3.0	29
97	Activation of defective nickel molybdate nanowires for enhanced alkaline electrochemical hydrogen evolution. Nanoscale, 2018, 10, 16539-16546.	2.8	29
98	Enhancing the Lithium Storage Capacities of Coordination Compounds for Advanced Lithium-Ion Battery Anodes via a Coordination Chemistry Approach. Inorganic Chemistry, 2018, 57, 10640-10648.	1.9	20
99	Superhydrophilic amorphous Co–B–P nanosheet electrocatalysts with Pt-like activity and durability for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22062-22069.	5.2	156
100	Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon, 2018, 138, 300-308.	5.4	53
101	Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nature Communications, 2018, 9, 2373.	5.8	336
102	Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy, 2017, 33, 205-212.	8.2	54
103	NiO/CoN Porous Nanowires as Efficient Bifunctional Catalysts for Zn–Air Batteries. ACS Nano, 2017, 11, 2275-2283.	7.3	456
104	Amorphous Zr(OH) 4 coated LiNi 0.915 Co 0.075 Al 0.01 O 2 cathode material with enhanced electrochemical performance for lithium ion batteries. Journal of Energy Chemistry, 2017, 26, 481-487.	7.1	38
105	High Anode Performance of in Situ Formed Cu ₂ Sb Nanoparticles Integrated on Cu Foil via Replacement Reaction for Sodium-Ion Batteries. ACS Energy Letters, 2017, 2, 256-262.	8.8	111
106	Stable layered Ni-rich LiNi _{0.9} Co _{0.07} Al _{0.03} O ₂ microspheres assembled with nanoparticles as high-performance cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2724-2731.	5.2	165
107	Engineering Co ₉ S ₈ /WS ₂ array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017, 5, 23361-23368.	5.2	117
108	Oxygen Vacancies Dominated NiS ₂ /CoS ₂ Interface Porous Nanowires for Portable Zn–Air Batteries Driven Water Splitting Devices. Advanced Materials, 2017, 29, 1704681.	11.1	533

#	Article	IF	CITATIONS
109	Porous Multishelled Ni ₂ P Hollow Microspheres as an Active Electrocatalyst for Hydrogen and Oxygen Evolution. Chemistry of Materials, 2017, 29, 8539-8547.	3.2	279
110	Atomic‣evel Coupled Interfaces and Lattice Distortion on CuS/NiS ₂ Nanocrystals Boost Oxygen Catalysis for Flexible Znâ€Air Batteries. Advanced Functional Materials, 2017, 27, 1703779.	7.8	200
111	Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications, 2017, 8, 405.	5.8	1,224
112	Bulk Bismuth as a High apacity and Ultralong Cycleâ€Life Anode for Sodiumâ€Ion Batteries by Coupling with Glymeâ€Based Electrolytes. Advanced Materials, 2017, 29, 1702212.	11.1	343
113	Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chemical Communications, 2017, 53, 9862-9865.	2.2	87
114	In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte. ACS Applied Materials & amp; Interfaces, 2017, 9, 28620-28626.	4.0	26
115	Spinel cobalt–manganese oxide supported on non-oxidized carbon nanotubes as a highly efficient oxygen reduction/evolution electrocatalyst. Inorganic Chemistry Frontiers, 2017, 4, 1628-1633.	3.0	37
116	High-index faceted CuFeS ₂ nanosheets with enhanced behavior for boosting hydrogen evolution reaction. Nanoscale, 2017, 9, 9230-9237.	2.8	70
117	Synthesis of size-controlled CoMn2O4 quantum dots supported on carbon nanotubes for electrocatalytic oxygen reduction/evolution. Nano Research, 2017, 10, 3836-3847.	5.8	53
118	Intrinsic defect based homojunction: A novel quantum dots photoanode with enhanced charge transfer kinetics. Applied Catalysis B: Environmental, 2017, 203, 829-838.	10.8	30
119	Resumption of the Discharged Li-AgVO3 Primary Batteries for Rechargeable Li-O2 Batteries. Acta Chimica Sinica, 2017, 75, 199.	0.5	8
120	Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodiumâ€ i on Batteries with Superior Rate Capability and Long Cycling Stability. Small, 2016, 12, 1359-1368.	5.2	423
121	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	5.2	83
122	Elucidating dz2 orbital selective catalytic activity in brownmillerite Ca2Mn2O5. AIP Advances, 2016, 6, 095210.	0.6	6
123	A solid lithium superionic conductor Li ₁₁ AlP ₂ S ₁₂ with a thio-LISICON analogous structure. Chemical Communications, 2016, 52, 6091-6094.	2.2	74
124	A Co ₃ O ₄ @MnO ₂ /Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li–O ₂ batteries. Inorganic Chemistry Frontiers, 2016, 3, 866-871.	3.0	58
125	A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal–Organic Material. Inorganic Chemistry, 2016, 55, 4935-4940.	1.9	75
126	Stirring-assisted hydrothermal synthesis of ultralong α-MnO ₂ nanowires for oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 928-933.	3.0	28

#	Article	IF	CITATIONS
127	Cation-Deficient Spinel ZnMn ₂ O ₄ Cathode in Zn(CF ₃ SO ₃) ₂ Electrolyte for Rechargeable Aqueous Zn-Ion Battery. Journal of the American Chemical Society, 2016, 138, 12894-12901.	6.6	1,451
128	Ni–C–N Nanosheets as Catalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 14546-14549.	6.6	424
129	SiO ₂ -coated LiNi _{0.915} Co _{0.075} Al _{0.01} O ₂ cathode material for rechargeable Li-ion batteries. Nanoscale, 2016, 8, 19263-19269.	2.8	108
130	Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catalysis Science and Technology, 2016, 6, 3443-3448.	2.1	102
131	Graphene oxides doped MIL-101(Cr) as anode materials for enhanced electrochemistry performance of lithium ion battery. Inorganic Chemistry Communication, 2016, 64, 63-66.	1.8	23
132	Template-free synthesis of porous graphitic carbon nitride/carbon composite spheres for electrocatalytic oxygen reduction reaction. Chemical Communications, 2016, 52, 1725-1728.	2.2	93
133	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy, 2016, 19, 307-317.	8.2	30
134	Nanocomposite of Fe ₂ O ₃ @C@MnO ₂ as an Efficient Cathode Catalyst for Rechargeable Lithiumâ^'Oxygen Batteries. Small, 2015, 11, 5545-5550.	5.2	57
135	Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn ₂ O ₄ Nanodots Supported on Graphene. Inorganic Chemistry, 2015, 54, 5467-5474.	1.9	117
136	Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nature Communications, 2015, 6, 7345.	5.8	500
137	Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries. Journal of Power Sources, 2015, 293, 626-634.	4.0	245
138	Recycling Application of Li–MnO ₂ Batteries as Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 4338-4343.	7.2	109
139	Pyrite FeS ₂ for high-rate and long-life rechargeable sodium batteries. Energy and Environmental Science, 2015, 8, 1309-1316.	15.6	628
140	Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications. ACS Nano, 2015, 9, 1945-1954.	7.3	349
141	The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. Journal of Materials Chemistry A, 2015, 3, 3425-3431.	5.2	34
142	Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3320-3324.	5.2	86
143	Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chemical Communications, 2015, 51, 11599-11602.	2.2	71
144	3D Cu-doped CoS porous nanosheet films as superior counterelectrodes for quantum dot-sensitized solar cells. Nano Energy, 2015, 16, 163-172.	8.2	42

#	Article	IF	CITATIONS
145	Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li–O ₂ batteries. Nanoscale, 2015, 7, 11833-11840.	2.8	69
146	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	8.2	48
147	Beyond Yolk–Shell Nanoparticles: Fe ₃ O ₄ @Fe ₃ C Core@Shell Nanoparticles as Yolks and Carbon Nanospindles as Shells for Efficient Lithium Ion Storage. ACS Nano, 2015, 9, 3369-3376.	7.3	207
148	CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2015, 651, 382-388.	2.8	75
149	Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Research, 2015, 8, 3384-3393.	5.8	165
150	Soil as an inexhaustible and high-performance anode material for Li-ion batteries. Chemical Communications, 2015, 51, 15827-15830.	2.2	6
151	Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2015, 8, 156-164.	5.8	65
152	Efficiently Enhancing Oxygen Reduction Electrocatalytic Activity of MnO ₂ Using Facile Hydrogenation. Advanced Energy Materials, 2015, 5, 1400654.	10.2	78
153	Oxygen Bubble-Templated Hierarchical Porous ε-MnO ₂ as a Superior Catalyst for Rechargeable Li-O ₂ Batteries. Small, 2015, 11, 809-813.	5.2	90
154	MoS ₂ Nanoflowers with Expanded Interlayers as Highâ€Performance Anodes for Sodiumâ€lon Batteries. Angewandte Chemie, 2014, 126, 13008-13012.	1.6	310
155	Joint Electrical, Photophysical, and Photovoltaic Studies on Truxene Dyeâ€Sensitized Solar Cells: Impact of Arylamine Electron Donors. ChemSusChem, 2014, 7, 795-803.	3.6	29
156	ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale, 2014, 6, 3522.	2.8	112
157	Ultrasmall Sn Nanoparticles Embedded in Nitrogen-Doped Porous Carbon As High-Performance Anode for Lithium-Ion Batteries. Nano Letters, 2014, 14, 153-157.	4.5	538
158	Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Research, 2014, 7, 199-208.	5.8	233
159	Size effect of lithium peroxide on charging performance of Li–O ₂ batteries. Nanoscale, 2014, 6, 177-180.	2.8	80
160	Influence of donor and bridge structure in D–A–π–A indoline dyes on the photovoltaic properties of dye-sensitized solar cells employing iodine/cobalt electrolyte. Dyes and Pigments, 2014, 101, 270-279.	2.0	28
161	Redox couple related influences of bulky electron donor as well as spacer in organic dye-sensitized mesoscopic solar cells. Tetrahedron, 2014, 70, 6203-6210.	1.0	7
162	Porous perovskite CaMnO3as an electrocatalyst for rechargeable Li–O2batteries. Chemical Communications, 2014, 50, 1497-1499.	2.2	140

#	Article	IF	CITATIONS
163	MoS ₂ Nanoflowers with Expanded Interlayers as Highâ€Performance Anodes for Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 12794-12798.	7.2	670
164	Porous 0.2Li ₂ MnO ₃ ·0.8LiNi _{0.5} Mn _{0.5} O ₂ nanorods as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1636-1640.	5.2	71
165	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	7.2	252
166	Na ₃ V ₂ (PO ₄) ₃ @C core–shell nanocomposites for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 8668-8675.	5.2	348
167	Judicious Design of Indoline Chromophores for High-Efficiency Iodine-Free Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5768-5778.	4.0	56
168	2,2′-Bis(3-hydroxy-1,4-naphthoquinone)/CMK-3 nanocomposite as cathode material for lithium-ion batteries. Inorganic Chemistry Frontiers, 2014, 1, 193-199.	3.0	79
169	Polypyrrole-cobalt-carbon nanocomposites as efficient counter electrode materials for dye-sensitized solar cells. Science China Chemistry, 2014, 57, 1559-1563.	4.2	7
170	Nonstoichiometric Perovskite CaMnO _{3â~ʾĨ} for Oxygen Electrocatalysis with High Activity. Inorganic Chemistry, 2014, 53, 9106-9114.	1.9	202
171	Carbon-supported Ni3B nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2014, 39, 6987-6994.	3.8	39
172	Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO ₃ as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution. Advanced Materials, 2014, 26, 2047-2051.	11.1	244
173	Hydrothermal synthesis of spindle-like Li2FeSiO4-C composite as cathode materials for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 274-281.	7.1	19
174	Ultrasmall Li2S Nanoparticles Anchored in Graphene Nanosheets for High-Energy Lithium-Ion Batteries. Scientific Reports, 2014, 4, 6467.	1.6	122
175	M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction. Scientific Reports, 2014, 4, 4386.	1.6	93
176	Solvo/Hydrothermal Preparation of MnO <i>_x</i> @rGO Nanocomposites for Electrocatalytic Oxygen Reduction. Acta Chimica Sinica, 2014, 72, 920.	0.5	7
177	Li3V2(PO4)3@C core–shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale, 2013, 5, 6485.	2.8	130
178	Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \$ar 3\$ m). Nano Research, 2013, 6, 679-687.	5.8	126
179	Ordered spinel LiNi0.5Mn1.5O4 nanorods for high-rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2013, 688, 113-117.	1.9	31
180	Synthesis of new truxene based organic sensitizers for iodine-free dye-sensitized solar cells. Tetrahedron, 2013, 69, 10573-10580.	1.0	12

#	Article	IF	CITATIONS
181	Intergrown LiNi0.5Mn1.5O4·LiNi1/3Co1/3Mn1/3O2 composite nanorods as high-energy density cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13742.	5.2	16
182	Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chemical Science, 2013, 4, 368-376.	3.7	164
183	Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 12650.	5.2	41
184	Intergrown Li2FeSiO4·LiFePO4–C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chemical Communications, 2013, 49, 3040.	2.2	73
185	Nanoporous Ni-based catalysts for hydrogen generation fromÂhydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2013, 38, 5768-5774.	3.8	46
186	Enhancing Electrocatalytic Oxygen Reduction on MnO ₂ with Vacancies. Angewandte Chemie - International Edition, 2013, 52, 2474-2477.	7.2	623
187	LiNi _{0.5} Mn _{1.5} O ₄ Porous Nanorods as High-Rate and Long-Life Cathodes for Li-Ion Batteries. Nano Letters, 2013, 13, 2822-2825.	4.5	257
188	A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries. Journal of Energy Chemistry, 2013, 22, 72-77.	7.1	174
189	Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. Journal of Materials Chemistry A, 2013, 1, 9484.	5.2	194
190	Spindle-Like LiMnPO ₄ Assembled by Nanorods with Different Crystallographic Orientations as the Cathode of Lithium-Ion Batteries. Science of Advanced Materials, 2013, 5, 1676-1685.	0.1	6
191	Nanoporous Catalysts for Rechargeable Li-air Batteries. Acta Chimica Sinica, 2013, 71, 473.	0.5	14
192	Something from nothing. Nature Chemistry, 2012, 4, 962-963.	6.6	75
193	Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro–nano structure and high rate capability. RSC Advances, 2012, 2, 5669.	1.7	111
194	A thermally and electrochemically stable organic hole-transporting material with an adamantane central core and triarylamine moieties. Synthetic Metals, 2012, 162, 490-496.	2.1	47
195	Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction. Journal of Materials Chemistry, 2012, 22, 15812.	6.7	76
196	Porous MnO2 hollow cubes as new nanoscaffold materials for the dehydrogenation promotion of ammonia-borane (AB). Microporous and Mesoporous Materials, 2012, 161, 40-47.	2.2	15
197	Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41, 2172.	18.7	2,322
198	Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chemical Communications, 2012, 48, 7334.	2.2	153

#	Article	IF	CITATIONS
199	Size-controlled chalcopyrite CulnS2 nanocrystals: One-pot synthesis and optical characterization. Science China Chemistry, 2012, 55, 1236-1241.	4.2	17
200	Decreasing the thermal dehydrogenation temperature of methylamine borane (MeAB) by mixing with poly(methyl acrylate) (PMA). International Journal of Hydrogen Energy, 2012, 37, 7638-7644.	3.8	40
201	Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. Journal of Power Sources, 2012, 198, 229-235.	4.0	173
202	Silica hollow nanospheres as new nanoscaffold materials to enhance hydrogen releasing from ammonia borane. Physical Chemistry Chemical Physics, 2011, 13, 18592.	1.3	37
203	Transition metal vanadium oxides and vanadate materials for lithium batteries. Journal of Materials Chemistry, 2011, 21, 9841.	6.7	205
204	Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy and Environmental Science, 2011, 4, 3668.	15.6	264
205	NANOSTRUCTURED ELECTRODE MATERIALS FOR LITHIUM BATTERIES. , 2011, , 85-126.		0
206	Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 2919-2923.	2.8	44
207	Synthesis and electrochemical properties of porous LiV3O8 as cathode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2011, 509, 6030-6035.	2.8	23
208	Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nature Chemistry, 2011, 3, 79-84.	6.6	1,183
209	Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. Science China Chemistry, 2011, 54, 936-940.	4.2	15
210	Functional Materials for Rechargeable Batteries. Advanced Materials, 2011, 23, 1695-1715.	11.1	1,419
211	Synthesis, Structures, and Adsorption Properties of Two New La ^{III} –Mg ^{II} Heterometallic Polymers. European Journal of Inorganic Chemistry, 2011, 2011, 5299-5304.	1.0	10
212	Hydrogen generation by hydrolysis of ammonia borane with a nanoporous cobalt–tungsten–boron–phosphorus catalyst supported on Ni foam. International Journal of Hydrogen Energy, 2011, 36, 1411-1417.	3.8	61
213	Carbon-supported Ni1â^'x@Ptx (xÂ=Â0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2011, 36, 1984-1990.	3.8	79
214	SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2011, 196, 2195-2201.	4.0	180
215	Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core–Pt shell nanoparticles. Journal of Power Sources, 2011, 196, 2785-2789.	4.0	118
216	A Quantumâ€Chemical Study on Understanding the Dehydrogenation Mechanisms of Metal (Na, K, or Mg) Cation Substitution in Lithium Amide Nanoclusters. Advanced Functional Materials, 2010, 20, 1894-1902.	7.8	8

#	Article	IF	CITATIONS
217	A Soft Hydrogen Storage Material: Poly(Methyl Acrylate)â€Confined Ammonia Borane with Controllable Dehydrogenation. Advanced Materials, 2010, 22, 394-397.	11.1	111
218	Electroless-deposited Co–P catalysts for hydrogen generation from alkaline NaBH4 solution. International Journal of Hydrogen Energy, 2010, 35, 8363-8369.	3.8	71
219	All-Solid-State Dye-Sensitized Solar Cells with Alkyloxy-Imidazolium Iodide Ionic Polymer/SiO ₂ Nanocomposite Electrolyte and Triphenylamine-Based Organic Dyes. Journal of Physical Chemistry C, 2010, 114, 6814-6821.	1.5	52
220	Preparation and characterization of nanocrystalline Mg2FeH6. Journal of Alloys and Compounds, 2010, 508, 554-558.	2.8	34
221	A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes. Journal of Chemical Physics, 2010, 132, 034305.	1.2	76
222	Triphenylamine-Based Ionic Dyes with Simple Structures: Broad Photoresponse and Limitations on Open-Circuit Voltage in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 15842-15848.	1.5	29
223	Lithium transport at silicon thin film: Barrier for high-rate capability anode. Journal of Chemical Physics, 2010, 133, 034701.	1.2	100
224	MnO ₂ -Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chemistry of Materials, 2010, 22, 898-905.	3.2	679
225	High-surface-area microporous carbon as the efficient photocathode of dye-sensitized solar cells. Solid State Sciences, 2009, 11, 2051-2055.	1.5	24
226	Ni1â^'xPtx (x=0–0.08) films as the photocathode of dye-sensitized solar cells with high efficiency. Nano Research, 2009, 2, 484-492.	5.8	42
227	Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries. Nano Research, 2009, 2, 713-721.	5.8	30
228	PtxNi1â^'x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2009, 34, 8785-8791.	3.8	146
229	Facile solution-controlled growth of CuInS2 thin films on FTO and TiO2/FTO glass substrates for photovoltaic application. Journal of Alloys and Compounds, 2009, 481, 786-791.	2.8	76
230	A quantum chemical study on magnesium(Mg)/magnesium–hydrogen(Mg–H) nanowires. Journal of Alloys and Compounds, 2009, 484, 308-313.	2.8	33
231	Combination of Lightweight Elements and Nanostructured Materials for Batteries. Accounts of Chemical Research, 2009, 42, 713-723.	7.6	454
232	Quasi-Solid-State Dye-Sensitized Solar Cells with Polymer Gel Electrolyte and Triphenylamine-Based Organic Dyes. ACS Applied Materials & Interfaces, 2009, 1, 944-950.	4.0	67
233	Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry, 2009, 19, 4108.	6.7	52
234	Selective Synthesis of Manganese Oxide Nanostructures for Electrocatalytic Oxygen Reduction. ACS Applied Materials & Interfaces, 2009, 1, 460-466.	4.0	154

#	Article	IF	CITATIONS
235	Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research, 2008, 1, 242.	5.8	30
236	Template-Directed Materials for Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 2008, 20, 667-681.	3.2	507
237	Electrocatalytic Methanol Oxidation of Pt _{0.5} Ru _{0.5-} <i>_x</i> Sn <i>_x</i> /c (<i>x</i> = 0â^0.5). Journal of Physical Chemistry C, 2008, 112, 6337-6345.	1.5	80
238	Design of two 3D homochiral Co(II) metal–organic open frameworks by layered-pillar strategy: structure and properties. CrystEngComm, 2008, 10, 963.	1.3	23
239	Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake. Chemistry of Materials, 2008, 20, 1889-1895.	3.2	87
240	Ni1-xPtx (x = 0â^'0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry, 2007, 46, 788-794.	1.9	350
241	Nestâ€like Silicon Nanospheres for Highâ€Capacity Lithium Storage. Advanced Materials, 2007, 19, 4067-4070.	11.1	455
242	A novel design of a heat exchanger for a metal-hydrogen reactor. International Journal of Hydrogen Energy, 2007, 32, 3501-3507.	3.8	130
243	Novel quasi-solid electrolyte for dye-sensitized solar cells. Journal of Power Sources, 2007, 165, 911-915.	4.0	60
244	Improving the performance of PtRu/C catalysts for methanol oxidation by sensitization and activation treatment. Journal of Power Sources, 2007, 166, 331-336.	4.0	45
245	ZnFe2O4 tubes: Synthesis and application to gas sensors with high sensitivity and low-energy consumption. Sensors and Actuators B: Chemical, 2007, 120, 403-410.	4.0	172
246	Facile Controlled Synthesis of MnO2Nanostructures of Novel Shapes and Their Application in Batteries. Inorganic Chemistry, 2006, 45, 2038-2044.	1.9	473
247	Synthesis, Characterization, and Gas-Sensor Application of WO[sub 3] Nanocuboids. Journal of the Electrochemical Society, 2006, 153, H133.	1.3	40
248	Shape-Controlled Synthesis of Ternary Chalcogenide ZnIn2S4and CuIn(S,Se)2Nano-/Microstructures via Facile Solution Route. Journal of the American Chemical Society, 2006, 128, 7222-7229.	6.6	397
249	Storage of hydrogen and lithium in inorganic nanotubes and nanowires. Journal of Materials Research, 2006, 21, 2744-2757.	1.2	71
250	Removal of nickel ions from wastewater by Mg(OH)2/MgO nanostructures embedded in Al2O3 membranes. Journal of Alloys and Compounds, 2006, 426, 281-285.	2.8	76
251	Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. Journal of Power Sources, 2006, 160, 542-547.	4.0	301
252	Electrodeposition synthesis and electrochemical properties of nanostructured Î ³ -MnO2 films. Journal of Power Sources, 2006, 162, 727-734.	4.0	253

FANGYI CHENG

#	Article	IF	CITATIONS
253	Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of α-MoO3Microrods. Journal of Physical Chemistry B, 2006, 110, 119-124.	1.2	206
254	Conducting Poly(aniline) Nanotubes and Nanofibers: Controlled Synthesis and Application in Lithium/Poly(aniline) Rechargeable Batteries. Chemistry - A European Journal, 2006, 12, 3082-3088.	1.7	171
255	MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives. Advanced Materials, 2006, 18, 2561-2564.	11.1	98
256	Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries. Journal of Power Sources, 2005, 150, 255-260.	4.0	33
257	Electrochemical Deposition of Ni(OH)2 and Fe-Doped Ni(OH)2 Tubes. European Journal of Inorganic Chemistry, 2005, 2005, 4035-4039.	1.0	59
258	High-Power Alkaline Zn-MnO2 Batteries Using γ-MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder. Advanced Materials, 2005, 17, 2753-2756.	11.1	295
259	Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 Nanotubes as the Cathode Materials of Lithium Ion Batteries ChemInform, 2005, 36, no.	0.1	1
260	Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2Nanotubes as the Cathode Materials of Lithium Ion Batteries. Journal of Physical Chemistry B, 2005, 109, 14017-14024.	1.2	209