
Bai Weibin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893175/publications.pdf Version: 2024-02-01

RAI WEIRIN

#	Article	IF	CITATIONS
1	Highly efficient water steam generation via natural black urushiol-Fe polymeric microspheres coated-cotton fabric. Desalination, 2022, 538, 115906.	8.2	15
2	Urushiol titanium <scp>polymerâ€based</scp> composites coatings for antiâ€corrosion and antifouling in marine spray splash zones. Journal of Applied Polymer Science, 2021, 138, 50861.	2.6	10
3	Robust and Durable Superhydrophobic Polythiophene/SiO ₂ Coated Cotton Fabric for Versatile Oil–Water Separation. Advanced Materials Interfaces, 2021, 8, 2100725.	3.7	15
4	Preparation and application of microporous carbons as excellent adsorbents for reversible iodine capture and efficient removal of dye. Diamond and Related Materials, 2021, 120, 108718.	3.9	7
5	Preparation of nano-TiO2@polyfluorene composite particles for the photocatalytic degradation of organic pollutants under sunlight. Solar Energy, 2020, 196, 616-624.	6.1	18
6	Eco-friendly stable cardanol-based benzoxazine modified superhydrophobic cotton fabrics for oil–water separation. Separation and Purification Technology, 2020, 253, 117545.	7.9	42
7	Natural Highly-hydrophobic urushiol@TiO2 coated cotton fabric for effective oil–water separation in highly acidic alkaline and salty environment. Separation and Purification Technology, 2020, 253, 117495.	7.9	30
8	Preparation of porous urushiol-based polybenzoxazine films with chemical resistance by breath figures method. Polymer Bulletin, 2019, 76, 6459-6466.	3.3	13
9	Ordered porous conjugated poly(p-phenylene)s films self-assembled through alcohol-controlled breath figure method. Polymer Testing, 2019, 73, 389-394.	4.8	2
10	Sunlight highly photoactive TiO 2 @poly- p -phenylene composite microspheres for malachite green degradation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 112-116.	5.3	8
11	Superhydrophobic paper from conjugated poly(p-phenylene)s: Self-assembly and separation of oil/water mixture. Materials Chemistry and Physics, 2018, 216, 230-236.	4.0	20
12	Conductive, mechanical, and chemical resistance properties of polyurushiol/multiwalled carbon nanotube composite coatings. Polymer Composites, 2012, 33, 711-715.	4.6	7
13	Synthesis and properties of poly(1,3-dialkoxybenzene)s from facile solvent-free grinding oxidative coupling polymerization. Polymer Bulletin, 2012, 69, 125-135.	3.3	0
14	Preparation and properties of raw lacquer/multihydroxyl polyacrylate/organophilic montmorillonite nanocomposites. Polymer Bulletin, 2012, 68, 983-992.	3.3	17
15	Hexaalkoxytriphenylenes Synthesized from Facile Solvent-Free Oxidative Coupling Trimerization. Synthetic Communications, 2011, 41, 903-906.	2.1	8