Karolina Trejgis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of highly sensitive YAG:Cr ³⁺ ,Nd ³⁺ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues. Physical Chemistry Chemical Physics, 2017, 19, 7343-7351.	2.8	121
2	Luminescence lifetime thermometry with Mn ³⁺ –Mn ⁴⁺ co-doped nanocrystals. Journal of Materials Chemistry C, 2018, 6, 7092-7100.	5.5	109
3	Thermochromic Luminescent Nanomaterials Based on Mn ⁴⁺ /Tb ³⁺ Codoping for Temperature Imaging with Digital Cameras. ACS Applied Materials & Interfaces, 2020, 12, 44039-44048.	8.0	90
4	The influence of manganese concentration on the sensitivity of bandshape and lifetime luminescent thermometers based on Y ₃ Al ₅ O ₁₂ :Mn ³⁺ ,Mn ⁴⁺ ,Nd ³⁺ nanocrystals. Physical Chemistry Chemical Physics, 2018, 20, 9574-9581.	2.8	89
5	Luminescence based temperature bio-imaging: Status, challenges, and perspectives. Applied Physics Reviews, 2021, 8, .	11.3	84
6	Engineering excited state absorption based nanothermometry for temperature sensing and imaging. Nanoscale, 2020, 12, 4667-4675.	5.6	72
7	Luminescence thermometry with transition metal ions. A review. Coordination Chemistry Reviews, 2022, 469, 214671.	18.8	69
8	Near-Infrared-to-Near-Infrared Excited-State Absorption in LaPO ₄ :Nd ³⁺ Nanoparticles for Luminescent Nanothermometry. ACS Applied Nano Materials, 2020, 3, 4818-4825.	5.0	44
9	Phosphor-Assisted Temperature Sensing and Imaging Using Resonant and Nonresonant Photoexcitation Scheme. ACS Applied Materials & Interfaces, 2017, 9, 43081-43089.	8.0	42
10	Enhancing the sensitivity of a Nd ³⁺ ,Yb ³⁺ :YVO ₄ nanocrystalline luminescent thermometer by host sensitization. Physical Chemistry Chemical Physics, 2019, 21, 10532-10539.	2.8	37
11	Upconverting SrF ₂ :Er ³⁺ Nanoparticles for Optical Temperature Sensors. ACS Applied Nano Materials, 2021, 4, 10438-10448.	5.0	35
12	Fabrication and characterization of up-converting β-NaYF4:Er3+,Yb3+@NaYF4 core–shell nanoparticles for temperature sensing applications. Scientific Reports, 2020, 10, 14672.	3.3	26
13	Nd3+ doped TZPN glasses for NIR operating single band ratiometric approach of contactless temperature readout. Journal of Luminescence, 2020, 224, 117295.	3.1	25
14	Highly sensitive multiparametric luminescent thermometer for biologically-relevant temperatures based on Mn4+, Ln3+ co-doped SrTiO3 nanocrystals. Journal of Alloys and Compounds, 2021, 875, 159973.	5.5	23
15	The role of surface related quenching in the single band ratiometric approach based on excited state absorption processes in Nd3+ doped phosphors. Materials Research Bulletin, 2021, 139, 111288.	5.2	17
16	Strong sensitivity enhancement in lifetime-based luminescence thermometry by co-doping of SrTiO ₃ :Mn ⁴⁺ nanocrystals with trivalent lanthanide ions. Journal of Materials Chemistry C, 2021, 9, 10309-10316.	5.5	14
17	Effect of the nanoparticle size on thermometric properties of a single-band ratiometric luminescent thermometer in NaYF ₄ :Nd ³⁺ . Journal of Materials Chemistry C, 2022, 10, 3006-3014.	5.5	12
18	Impact of host composition and dopant ion concentration on the thermometric properties of a Eu3+ activated fluoride-based single-band ratiometric luminescent thermometer. Journal of Alloys and Compounds, 2022, 898, 162839.	5.5	6

KAROLINA TREJGIS

#	Article	IF	CITATIONS
19	A single-band ratiometric luminescent thermometer based on tetrafluorides operating entirely in the infrared region. Nanoscale Advances, 2022, 4, 437-446.	4.6	5
20	Synergy between NIR luminescence and thermal emission toward highly sensitive NIR operating emissive thermometry. Scientific Reports, 2020, 10, 19692.	3.3	4
21	Modulation of thermometric performance of single-band-ratiometric luminescent thermometers based on luminescence of Nd3+ activated tetrafluorides by size modification. Scientific Reports, 2022, 12, 5847.	3.3	3
22	Synthesis and characterizations of YZ-BDC:Eu ³⁺ ,Tb ³⁺ nanothermometers for luminescence-based temperature sensing. RSC Advances, 2022, 12, 13065-13073.	3.6	2