Alexandre Cc Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893027/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydrate Polymers, 2021, 252, 116978.	10.2	19
2	Drug Delivery Systems on Leprosy Therapy: Moving Towards Eradication?. Pharmaceutics, 2020, 12, 1202.	4.5	9
3	Optimization of Rifapentine-Loaded Lipid Nanoparticles Using a Quality-by-Design Strategy. Pharmaceutics, 2020, 12, 75.	4.5	11
4	Study of the effect of solvent on acetylate cashew gum-based nanoparticles properties and antimicrobial activity. Revista Materia, 2020, 25, .	0.2	0
5	pH-responsive chitosan based hydrogels affect the release of dapsone: Design, set-up, and physicochemical characterization. International Journal of Biological Macromolecules, 2019, 133, 1268-1279.	7.5	39
6	Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 653-663.	2.8	59
7	Overcoming clofazimine intrinsic toxicity: statistical modelling and characterization of solid lipid nanoparticles. Journal of the Royal Society Interface, 2018, 15, 20170932.	3.4	17
8	Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. International Journal of Pharmaceutics, 2018, 536, 478-485.	5.2	101
9	Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. European Journal of Pharmaceutical Sciences, 2018, 112, 28-37.	4.0	31
10	Nanosystems as modulators of intestinal dapsone and clofazimine delivery. Biomedicine and Pharmacotherapy, 2018, 103, 1392-1396.	5.6	9
11	Folate-targeted nanostructured lipid carriers for enhanced oral delivery of epigallocatechin-3-gallate. Food Chemistry, 2017, 237, 803-810.	8.2	40
12	pH-sensitive nanoparticles for improved oral delivery of dapsone: risk assessment, design, optimization and characterization. Nanomedicine, 2017, 12, 1975-1990.	3.3	15
13	Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine, 2017, 12, 2721-2736.	3.3	60
14	Oral Administration of Nanoparticles-Based TB Drugs. , 2017, , 307-326.		3
15	Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Design, Development and Therapy, 2016, Volume 10, 2467-2475.	4.3	77
16	Design and statistical modeling of mannose-decorated dapsone-containing nanoparticles as a strategy of targeting intestinal M-cells. International Journal of Nanomedicine, 2016, 11, 2601.	6.7	29
17	Multicomponent systems with cyclodextrins and hydrophilic polymers for the delivery of Efavirenz. Carbohydrate Polymers, 2015, 130, 133-140.	10.2	29
18	Rational and precise development of amorphous polymeric systems with dapsone by response surface methodology. International Journal of Biological Macromolecules, 2015, 81, 662-671.	7.5	18

#	Article	IF	CITATIONS
19	Solid dispersion of efavirenz in PVP K-30 by conventional solvent and kneading methods. Carbohydrate Polymers, 2014, 104, 166-174.	10.2	61
20	Quality by Design: Discussing and Assessing the Solid Dispersions Risk. Current Drug Delivery, 2014, 11, 253-269.	1.6	12
21	Study of stability and drug-excipient compatibility of diethylcarbamazine citrate. Journal of Thermal Analysis and Calorimetry, 2013, 111, 2179-2186.	3.6	30