Rodrigo Medeiros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6893013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reply to Peng and Zhao: Loss of endocytic protein TOM1 in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3917-3919.	3.3	0
2	Altered Expression of the m6A Methyltransferase METTL3 in Alzheimer's Disease. ENeuro, 2020, 7, ENEURO.0125-20.2020.	0.9	92
3	Intra- and extracellular β-amyloid overexpression via adeno-associated virus-mediated gene transfer impairs memory and synaptic plasticity in the hippocampus. Scientific Reports, 2019, 9, 15936.	1.6	12
4	Amyloid-beta impairs TOM1-mediated IL-1R1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21198-21206.	3.3	24
5	Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. Journal of Molecular Biology, 2019, 431, 1843-1868.	2.0	281
6	Removal of p75 Neurotrophin Receptor Expression from Cholinergic Basal Forebrain Neurons Reduces Amyloid-β Plaque Deposition and Cognitive Impairment in Aged APP/PS1 Mice. Molecular Neurobiology, 2019, 56, 4639-4652.	1.9	25
7	Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. Journal of Neuroinflammation, 2018, 15, 276.	3.1	353
8	Inflammatory Cytokine, IL-1β, Regulates Glial Glutamate Transporter via microRNA-181a in vitro. Journal of Alzheimer's Disease, 2018, 63, 965-975.	1.2	16
9	Impaired <scp>AMPA</scp> signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell, 2018, 17, e12791.	3.0	58
10	Blockade of hippocampal bradykinin B1 receptors improves spatial learning and memory deficits in middle-aged rats. Behavioural Brain Research, 2017, 316, 74-81.	1.2	15
11	Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta. Toxicological Sciences, 2016, 152, 194-204.	1.4	75
12	AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer's Disease. Neurodegenerative Diseases, 2016, 16, 95-110.	0.8	59
13	Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. Journal of Neuroinflammation, 2015, 12, 139.	3.1	380
14	Shortâ€ŧerm modern lifeâ€ŀike stress exacerbates Aβâ€pathology and synapse loss in 3xTgâ€ <scp>AD</scp> mic Journal of Neurochemistry, 2015, 134, 915-926.	2.1	74
15	Ceftriaxone ameliorates tau pathology and cognitive decline via restoration of glial glutamate transporter in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2015, 36, 2260-2271.	1.5	128
16	Alzheimerâ€associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Molecular Medicine, 2015, 7, 190-210.	3.3	176
17	B2 receptor blockage prevents AÎ ² -induced cognitive impairment by neuroinflammation inhibition. Behavioural Brain Research, 2015, 278, 482-491.	1.2	27
18	α7 Nicotinic Receptor Agonist Enhances Cognition in Aged 3xTg-AD Mice with Robust Plaques and Tangles. American Journal of Pathology, 2014, 184, 520-529.	1.9	68

RODRIGO MEDEIROS

#	Article	IF	CITATIONS
19	Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition. Neurobiology of Disease, 2014, 62, 407-415.	2.1	19
20	Genetic Ablation of Tau Mitigates Cognitive Impairment Induced by Type 1 Diabetes. American Journal of Pathology, 2014, 184, 819-826.	1.9	41
21	p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neuroscience Letters, 2014, 575, 96-100.	1.0	48
22	Restoration of Lipoxin A4 Signaling Reduces Alzheimer's Disease-Like Pathology in the 3xTg-AD Mouse Model. Journal of Alzheimer's Disease, 2014, 43, 893-903.	1.2	76
23	Astrocytes: Conductors of the Alzheimer disease neuroinflammatory symphony. Experimental Neurology, 2013, 239, 133-138.	2.0	184
24	Mifepristone Alters Amyloid Precursor Protein Processing to Preclude Amyloid Beta and Also Reduces Tau Pathology. Biological Psychiatry, 2013, 74, 357-366.	0.7	87
25	The role of PKC/ERK1/2 signaling in the anti-inflammatory effect of tetracyclic triterpene euphol on TPA-induced skin inflammation in mice. European Journal of Pharmacology, 2013, 698, 413-420.	1.7	66
26	Aspirin-Triggered Lipoxin A4 Stimulates Alternative Activation of Microglia and Reduces Alzheimer Disease–Like Pathology in Mice. American Journal of Pathology, 2013, 182, 1780-1789.	1.9	139
27	The Bradykinin B1 Receptor Regulates Aβ Deposition and Neuroinflammation in Tg-SwDI Mice. American Journal of Pathology, 2013, 182, 1740-1749.	1.9	35
28	Transgenic Mouse Models of Alzheimer Disease: Developing a Better Model as a Tool for Therapeutic Interventions. Current Pharmaceutical Design, 2012, 18, 1131-1147.	0.9	146
29	The novel calpain inhibitor A-705253 prevents stress-induced tau hyperphosphorylation inÂvitro and inÂvivo. Neuropharmacology, 2012, 63, 606-612.	2.0	31
30	Effects of kinin <scp>B</scp> ₁ and <scp>B</scp> ₂ receptor antagonists on overactive urinary bladder syndrome induced by spinal cord injury in rats. British Journal of Pharmacology, 2012, 167, 1737-1752.	2.7	19
31	Endothelium dependent expression and underlying mechanisms of des-Arg9-bradykinin-induced B1R-mediated vasoconstriction in rat portal vein. Peptides, 2012, 37, 216-224.	1.2	8
32	Calpain Inhibitor A-705253 Mitigates Alzheimer's Disease–Like Pathology and Cognitive Decline in Aged 3xTgAD Mice. American Journal of Pathology, 2012, 181, 616-625.	1.9	80
33	Elucidating the Triggers, Progression, and Effects of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S195-S210.	1.2	16
34	Inflammation Induced by Infection Potentiates Tau Pathological Features in Transgenic Mice. American Journal of Pathology, 2011, 178, 2811-2822.	1.9	166
35	Loss of Muscarinic M1 Receptor Exacerbates Alzheimer's Disease–Like Pathology and Cognitive Decline. American Journal of Pathology, 2011, 179, 980-991	1.9	100
36	Glucose-dependent insulinotropic peptide receptor expression in the hippocampus and neocortex of mesial temporal lobe epilepsy patients and rats undergoing pilocarpine induced status epilepticus. Peptides, 2011, 32, 781-789.	1.2	18

RODRIGO MEDEIROS

#	Article	IF	CITATIONS
37	The selective and competitive N-methyl-D-aspartate receptor antagonist, (â~`)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid, prevents synaptic toxicity induced by amyloid-β in mice. Neuroscience, 2011, 192, 631-641.	1.1	21
38	The Role of Tau in Alzheimer's Disease and Related Disorders. CNS Neuroscience and Therapeutics, 2011, 17, 514-524.	1.9	195
39	Folic Acid Plus α-Tocopherol Mitigates Amyloid-β-Induced Neurotoxicity through Modulation of Mitochondrial Complexes Activity1. Journal of Alzheimer's Disease, 2011, 24, 61-75.	1.2	74
40	Repeated Physical Training and Environmental Enrichment Induce Neurogenesis and Synaptogenesis Following Neuronal Injury in an Inducible Mouse Model. Journal of Behavioral and Brain Science, 2011, 01, 199-209.	0.2	5
41	Involvement of phosphoinositide 3-kinase γ in the neuro-inflammatory response and cognitive impairments induced by β-amyloid 1–40 peptide in mice. Brain, Behavior, and Immunity, 2010, 24, 493-501.	2.0	50
42	The role of TNF-α signaling pathway on COX-2 upregulation and cognitive decline induced by β-amyloid peptide. Behavioural Brain Research, 2010, 209, 165-173.	1.2	100
43	Mechanisms underlying the nociceptive responses induced by platelet-activating factor (PAF) in the rat paw. Biochemical Pharmacology, 2009, 77, 1223-1235.	2.0	15
44	Reduced skin inflammatory response in mice lacking inducible nitric oxide synthase. Biochemical Pharmacology, 2009, 78, 390-395.	2.0	27
45	Risk is in the Air. Annals of the New York Academy of Sciences, 2009, 1170, 629-636.	1.8	35
46	Role of the Macrophage Inflammatory Protein-1α/CC Chemokine Receptor 5 Signaling Pathway in the Neuroinflammatory Response and Cognitive Deficits Induced by β-Amyloid Peptide. American Journal of Pathology, 2009, 175, 1586-1597.	1.9	60
47	The role of kinin B1 receptors in the nociception produced by peripheral protein kinase C activation in mice. Neuropharmacology, 2008, 54, 597-604.	2.0	32
48	Genetic deletion or antagonism of kinin B1 and B2 receptors improves cognitive deficits in a mouse model of Alzheimer's disease. Neuroscience, 2008, 151, 631-643.	1.1	70
49	Molecular Mechanisms of Topical Anti-Inflammatory Effects of Lipoxin A4in Endotoxin-Induced Uveitis. Molecular Pharmacology, 2008, 74, 154-161.	1.0	48
50	Neuropathic Pain-Like Behavior after Brachial Plexus Avulsion in Mice: The Relevance of Kinin B ₁ and B ₂ Receptors. Journal of Neuroscience, 2008, 28, 2856-2863.	1.7	46
51	Connecting TNF-Â Signaling Pathways to iNOS Expression in a Mouse Model of Alzheimer's Disease: Relevance for the Behavioral and Synaptic Deficits Induced by Amyloid Protein. Journal of Neuroscience, 2007, 27, 5394-5404.	1.7	265
52	PAF-induced kinin B1 receptor in vivo up-regulation: involvement of distinct kinase pathways. Inflammation Research, 2007, 56, S488-S491.	1.6	0
53	Differential susceptibility following β-amyloid peptide-(1–40) administration in C57BL/6 and Swiss albino mice: Evidence for a dissociation between cognitive deficits and the glutathione system response. Behavioural Brain Research, 2007, 177, 205-213.	1.2	79
54	Preventive and therapeutic anti-inflammatory effects of systemic and topical thalidomide on endotoxin-induced uveitis in rats. Experimental Eye Research, 2007, 84, 553-560.	1.2	26

RODRIGO MEDEIROS

#	Article	IF	CITATIONS
55	Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. British Journal of Pharmacology, 2007, 151, 618-627.	2.7	136
56	Mechanisms underlying the inhibitory actions of the pentacyclic triterpene α-amyrin in the mouse skin inflammation induced by phorbol ester 12-O-tetradecanoylphorbol-13-acetate. European Journal of Pharmacology, 2007, 559, 227-235.	1.7	105
57	Anti-inflammatory effects of compounds alpha-humulene and (â^')-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. European Journal of Pharmacology, 2007, 569, 228-236.	1.7	421
58	The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson's disease. Experimental Neurology, 2006, 202, 391-403.	2.0	99
59	Mechanisms Underlying Lipopolysaccharide-Induced Kinin B1 Receptor Up-Regulation in the Pig Iris Sphincter in Vitro. Molecular Pharmacology, 2006, 69, 1701-1708.	1.0	8
60	The Effects of Diacerhein on Mechanical Allodynia in Inflammatory and Neuropathic Models of Nociception in Mice. Anesthesia and Analgesia, 2005, 101, 1763-1769.	1.1	58
61	Mechanisms underlying the relaxation response induced by bradykinin in the epithelium-intact guinea-pig trachea in vitro. British Journal of Pharmacology, 2005, 145, 740-750.	2.7	20
62	Mechanisms involved in the nociception produced by peripheral protein kinase c activation in mice. Pain, 2005, 117, 171-181.	2.0	87
63	Bradykinin B 1 Receptor Expression Induced by Tissue Damage in the Rat Portal Vein. Circulation Research, 2004, 94, 1375-1382.	2.0	57
64	Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. British Journal of Pharmacology, 2004, 143, 803-818.	2.7	224
65	The â€~in vivo' and â€~ex vivo' roles of cylcooxygenase-2, nuclear factor-κB and protein kinases pathways the up-regulation of B1 receptor-mediated contraction of the rabbit aorta. Regulatory Peptides, 2001, 97. 121-130.	in 1.9	16