Fu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892941/publications.pdf

Version: 2024-02-01

		394421	434195
55	1,111	19	31
papers	citations	h-index	g-index
55	55	55	899
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica. Chinese Journal of Chemical Engineering, 2023, 55, 236-245.	3.5	2
2	Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property. Chinese Journal of Chemical Engineering, 2022, 47, 120-133.	3.5	18
3	Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent. Chinese Journal of Chemical Engineering, 2022, 46, 194-206.	3.5	4
4	Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration. Chinese Journal of Chemical Engineering, 2022, 45, 182-193.	3.5	3
5	Hierarchically structured Ag modified nanosilica constructed by micelle modification tactics delivers integrated catalytic and antibacterial activity. Journal of Alloys and Compounds, 2022, 892, 162202.	5.5	6
6	Tuning N-doping thermal-process enables biomass-carbon surface modification for potential separation effect of CO2/CH4/N2. Separation and Purification Technology, 2022, 282, 120001.	7.9	29
7	Interfacial engineering coupling with tailored oxygen vacancies in Co2Mn2O4 spinel hollow nanofiber for catalytic phenol removal. Journal of Hazardous Materials, 2022, 424, 127647.	12.4	23
8	Tailored oxygen defect coupling composition engineering Co Mn2O4 spinel hollow nanofiber enables improved Bisphenol A catalytic degradation. Separation and Purification Technology, 2022, 282, 120051.	7.9	22
9	Hierarchical laminated Al2O3 in-situ integrated with high-dispersed Co3O4 for improved toluene catalytic combustion. Advanced Powder Technology, 2022, 33, 103377.	4.1	10
10	Achieving reinforced broad-spectrum and sustained antimicrobial efficacy by nickel-doping AlOOH nanoflower accommodated with uniform silver nanospecies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128488.	4.7	6
11	Enabling Efficient Aerobic 5â€Hydroxymethylfurfural Oxidation to 2,5â€Furandicarboxylic Acid in Water by Interfacial Engineering Reinforced Cuâ°Mn Oxides Hollow Nanofiber. ChemSusChem, 2022, 15, .	6.8	13
12	Enabling room-temperature reductive C–N coupling of nitroarenes: combining homogeneous and heterogeneous synergetic catalyses mediated by light. Green Chemistry, 2022, 24, 4012-4025.	9.0	12
13	The Co3O4 nanosheet hybridized with silver nanoparticles affords long-acting synergetic antimicrobial and catalytic degradation activity. Journal of Alloys and Compounds, 2022, 914, 165284.	5.5	9
14	The alkaline sites integrated into biomass-carbon reinforce selective adsorption of acetic acid: In situ implanting MgO during activation operation. Separation and Purification Technology, 2022, 297, 121415.	7.9	13
15	Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Separation and Purification Technology, 2021, 266, 118087.	7.9	41
16	Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene. Applied Surface Science, 2021, 537, 148100.	6.1	19
17	Visible-Light-Responsive Nanofibrous α-Fe ₂ O ₃ Integrated FeOx Cluster-Templated Siliceous Microsheets for Rapid Catalytic Phenol Removal and Enhanced Antibacterial Activity. ACS Applied Materials & Interfaces, 2021, 13, 19803-19815.	8.0	28
18	Reductive Câ^'N Coupling of Nitroarenes: Heterogenization of MoO ₃ Catalyst by Confinement in Silica. ChemSusChem, 2021, 14, 3413-3421.	6.8	15

#	Article	IF	Citations
19	Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Applied Catalysis B: Environmental, 2021, 295, 120272.	20.2	129
20	Drastically boosting volatile acetone capture enabled by N-doping activated carbon: An interesting deep surface digging effect. Separation and Purification Technology, 2021, 276, 119280.	7.9	20
21	Routeâ€Optimized Synthesis of Bagasseâ€Derived Hierarchical Activated Carbon for Maximizing Volatile Organic Compound (VOC) Adsorption Capture Properties. ChemistrySelect, 2021, 6, 10362-10368.	1.5	2
22	Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets. Applied Surface Science, 2020, 505, 144580.	6.1	30
23	Engineering ultrafine Pd clusters on laminar polyamide: A promising catalyst for benzyl alcohol oxidation under air in water. Molecular Catalysis, 2020, 497, 111203.	2.0	2
24	Record-high capture of volatile benzene and toluene enabled by activator implant-optimized banana peel-derived engineering carbonaceous adsorbents. Environment International, 2020, 143, 105774.	10.0	30
25	Engineering Adsorption Case for Efficient Capture of VOCs Using Biomassâ€based Corncobs via a Carbonized Strategy. ChemistrySelect, 2020, 5, 9162-9169.	1.5	12
26	Synergy Derived from Bimetal Coâ^'Cu in Phosphate to Enables Ultrafast Catalytic Hydrogenated Activity in Nitrophenol Reduction. ChemistrySelect, 2020, 5, 3405-3412.	1.5	6
27	Enabling synchronous activation of inner-core and mesoporous outer-shell of monodispersed Fe3O4@SiO2 by in-situ implanted MnO to synergistically deliver enhanced catalytic activity. Journal of Alloys and Compounds, 2020, 842, 155817.	5 . 5	17
28	High promoting of selective oxidation of ethylbenzene by Mn-ZSM-5 synthesized without organic template and calcination. Research on Chemical Intermediates, 2020, 46, 2817-2832.	2.7	15
29	Record-high catalytic hydrogenated activity in nitroarenes reduction derived from in-situ nascent active metals enabled by constructing bimetallic phosphate. Molecular Catalysis, 2020, 486, 110873.	2.0	6
30	Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Science China Materials, 2020, 63, 982-992.	6.3	65
31	Combining two active states of FeOx in-situ in molecular sieve to deliver enhanced catalytic activity via creating special configuration and synergy. Journal of Alloys and Compounds, 2020, 844, 156137.	5 . 5	12
32	Preparation of ZSM-5 containing vanadium and BrÃ, nsted acid sites with high promoting of styrene oxidation using 30% H2O2. Chinese Journal of Chemical Engineering, 2020, 28, 1302-1310.	3.5	15
33	Exposed ternary metal active sites on mesoporous channels: A promising catalyst for low-temperature selective catalytic oxidization of phenol with H2O2. Molecular Catalysis, 2019, 478, 110568.	2.0	8
34	Catalytic Upgrading of Renewable Levulinic Acid to Levulinate Esters Using Perchloric Acid Decorated Nanoporous Silica Gels. ChemistrySelect, 2019, 4, 1403-1409.	1.5	43
35	Fully catalytic upgrading synthesis of 5-Ethoxymethylfurfural from biomass-derived 5-Hydroxymethylfurfural over recyclable layered-niobium-molybdate solid acid. Applied Catalysis B: Environmental, 2019, 256, 117786.	20.2	80
36	Ni-bearing nanoporous alumina loaded ultralow-concentrated Pd as robust dual catalyst toward hydrogenation and oxidation reactions. Nano Structures Nano Objects, 2019, 18, 100287.	3.5	11

#	Article	IF	CITATIONS
37	Excellent porous environmental nanocatalyst: tactically integrating size-confined highly active MnO _x in nanospaces of mesopores enables the promotive catalytic degradation efficiency of organic contaminants. New Journal of Chemistry, 2019, 43, 19020-19034.	2.8	20
38	Nanosheet-like Ni-based metasilicate towards the regulated catalytic activity in styrene oxidation via introducing heteroatom metal. Applied Surface Science, 2019, 471, 822-834.	6.1	30
39	Stabilized Ponyâ€Sizedâ€CuFe ₂ O ₄ /Carbon Nitride Porous Composites with Boosting Fentonâ€ike Oxidation Activity. ChemistrySelect, 2018, 3, 4207-4216.	1.5	9
40	Enriched Ag Nanospecies Interspersed Nanoporous Siliceous Antibacterial Agent. ChemistrySelect, 2018, 3, 10255-10258.	1.5	6
41	Beltâ€Like Cobalt Phosphate Tetrahydrate as the Nonâ€Noble Metal Catalyst with Enhanced Catalytic Reduction Activity. ChemistrySelect, 2018, 3, 6924-6934.	1.5	19
42	Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds. Catalysts, 2018, 8, 80.	3.5	9
43	In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation. Microporous and Mesoporous Materials, 2017, 238, 69-77.	4.4	39
44	Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation. Molecular Catalysis, 2017, 435, 144-155.	2.0	34
45	Facilely self-reduced generation of Ag nanowires in the confined reductive siliceous nanopores and its catalytic reduction property. Journal of Alloys and Compounds, 2017, 719, 30-41.	5.5	12
46	Thermal-induced surface defective Co/Fe–Co planar hybrid composite nanosheet with enhanced catalytic activity in the Fenton-like reaction. Materials Chemistry Frontiers, 2017, 1, 2065-2077.	5.9	17
47	Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation. Microporous and Mesoporous Materials, 2017, 246, 215-224.	4.4	26
48	Templateâ€Free Synthesis of Highâ€Content Vanadiumâ€Doped ZSMâ€5 with Enhanced Catalytic Performance. ChemistrySelect, 2017, 2, 11513-11520.	1.5	5
49	Aminosilane decorated carbon template-induced in situ encapsulation of multiple-Ag-cores inside mesoporous hollow silica. RSC Advances, 2016, 6, 30852-30861.	3.6	8
50	A metal-assisted templating route (S ^O M ⁺ I ^{â^'}) for fabricating thin-layer CoO covered on the channel of nanospherical-HMS with improved catalytic properties. Dalton Transactions, 2016, 45, 6371-6382.	3.3	21
51	An iron-based micropore-enriched silica catalyst: in situ confining of Fe ₂ O ₃ in the mesopores and its improved catalytic properties. RSC Advances, 2016, 6, 76064-76074.	3.6	15
52	A Facile Method for the Direct Introduction of FeO _x in Mesoporous AMS Through A Templating Route (S ^{â^²} [MN] ⁺ l ^{â^²}) and Its Catalytic Application. ChemistrySelect, 2016, 1, 1305-1313.	1.5	3
53	Template-induced in situ dispersion of enhanced basic-sites on sponge-like mesoporous silica and its improved catalytic property. RSC Advances, 2016, 6, 91968-91980.	3.6	7
54	Direct templating assembly route for the preparation of highly-dispersed vanadia species encapsulated in mesoporous MCM-41 channel. RSC Advances, 2015, 5, 72099-72106.	3.6	23

#	Article	IF	CITATIONS
55	Coordination of manganese porphyrins on amino-functionalized MCM-41 for heterogeneous catalysis of naphthalene hydroxylation. Chinese Journal of Catalysis, 2015, 36, 1035-1041.	14.0	32