Manuel Lopez-Amo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892906/publications.pdf

Version: 2024-02-01

258 papers

3,933 citations

126858 33 h-index 52 g-index

260 all docs 260 docs citations

260 times ranked

2462 citing authors

#	Article	IF	CITATIONS
1	High Performance Fiber Laser Resonator for Dual Band (C and L) Sensing. Journal of Lightwave Technology, 2022, 40, 5273-5279.	2.7	3
2	Single Longitudinal Mode Lasers by Using Artificially Controlled Backscattering Erbium Doped Fibers. IEEE Access, 2021, 9, 27428-27433.	2.6	13
3	Liquid level sensor based on dynamic Fabry–Perot interferometers in processed capillary fiber. Scientific Reports, 2021, 11, 3039.	1.6	8
4	Hybrid Raman-erbium random fiber laser with a half open cavity assisted by artificially controlled backscattering fiber reflectors. Scientific Reports, 2021, 11, 9169.	1.6	7
5	Multiparameter Sensor Based on a Multi-Interferometric Serial Configuration For Temperature and Strain Measurements. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-4.	1.9	8
6	Microdrilled tapers to enhance optical fiber lasers for sensing. Scientific Reports, 2021, 11, 20408.	1.6	5
7	Quasi-Distributed Vibration Sensing Based on Weak Reflectors and STFT Demodulation. Journal of Lightwave Technology, 2020, 38, 6954-6960.	2.7	6
8	Vertically coupled InP/InGaAsP microring lasers using a single epitaxial growth and single-side lithography. Journal of Lightwave Technology, 2020, , 1-1.	2.7	1
9	Gamma Radiation-Induced Effects over an Optical Fiber Laser: Towards New Sensing Applications. Sensors, 2020, 20, 3017.	2.1	7
10	Spatial-frequency multiplexing of high-sensitivity liquid level sensors based on multimode interference micro-fibers. Sensors and Actuators A: Physical, 2020, 307, 111985.	2.0	10
11	Anomalous relative intensity noise transfer in ultralong random fiber lasers. Optics Express, 2020, 28, 28234.	1.7	8
12	Truly remote fiber optic sensor networks. JPhys Photonics, 2019, 1, 042002.	2.2	11
13	Experimental Observation of Anomalous RIN Transfer in Random Distributed Feedback Raman Fiber Lasers. , 2019, , .		1
14	Sensitivity Optimization of a Microstructured Optical Fiber Ammonia Gas Sensor by Means of Tuning the Thickness of a Metal Oxide Nano-Coating. IEEE Sensors Journal, 2019, 19, 4982-4991.	2.4	15
15	Micro-drilled optical fiber for enhanced laser strain sensors. , 2019, , .		4
16	Multiplexing optical fiber Fabry-Perot interferometers based on air-microcavities. , 2019, , .		4
17	Spectral shadowing suppression technique in phase-OTDR sensing based on weak fiber Bragg grating array. Optics Letters, 2019, 44, 526.	1.7	13
18	Quasi-distributed vibration sensing using OFDR and weak reflectors. Optics Letters, 2019, 44, 1884.	1.7	15

#	Article	IF	CITATIONS
19	Optical fiber lasers assisted by microdrilled optical fiber tapers. Optics Letters, 2019, 44, 2669.	1.7	12
20	Structural health monitoring of solar trackers using distributed fiber optic sensors. , 2019, , .		1
21	All-PM Fiber Loop Mirror Interferometer Analysis and Simultaneous Measurement of Temperature and Mechanical Vibration. Journal of Lightwave Technology, 2018, 36, 1105-1111.	2.7	17
22	Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sensors and Actuators B: Chemical, 2018, 254, 1087-1093.	4.0	71
23	SnO2-MOF-Fabry-Perot optical sensor for relative humidity measurements. Sensors and Actuators B: Chemical, 2018, 257, 189-199.	4.0	53
24	Simultaneous Strain and Temperature Multipoint Sensor Based on Microstructured Optical Fiber. Journal of Lightwave Technology, 2018, 36, 910-916.	2.7	14
25	Comparison between Different Structures of Suspended-Core Microstructured Optical Fibers for Volatiles Sensing. Sensors, 2018, 18, 2523.	2.1	12
26	Virtual FBGs Using Saturable Absorbers for Sensing with Fiber Lasers. Sensors, 2018, 18, 3593.	2.1	9
27	Comparison between Capacitive and Microstructured Optical Fiber Soil Moisture Sensors. Applied Sciences (Switzerland), 2018, 8, 1499.	1.3	9
28	Watt-level green random laser at 532  nm by SHG of a Yb-doped fiber laser. Optics Letters, 2018, 43, 42	28 4. 7	21
29	Real Time Measuring System of Multiple Chemical Parameters Using Microstructured Optical Fibers Based Sensors. IEEE Sensors Journal, 2018, 18, 5343-5351.	2.4	7
30	Wavelength converter using a highly Er-doped optical fiber ring laser. Laser Physics, 2018, 28, 075101.	0.6	0
31	Ultra-long (290 km) remote interrogation sensor network based on a random distributed feedback fiber laser. Optics Express, 2018, 26, 27189.	1.7	20
32	Gamma Radiation Measurements using an Optical Fiber Laser. , 2018, , .		2
33	Relative humidity multi-point optical sensors system based on fast Fourier multiplexing technique. Proceedings of SPIE, 2017, , .	0.8	0
34	Optical power-based interrogation of plasmonic tilted fiber Bragg grating biosensors. Proceedings of SPIE, 2017, , .	0.8	3
35	Polyaniline deposition on tilted fiber Bragg grating for pH sensing. , 2017, , .		0
36	Interferometric vs. wavelength selective optical fiber sensors for cryogenic temperature measurements. Proceedings of SPIE, 2017, , .	0.8	4

#	Article	IF	Citations
37	Influence of saturable absorbers on fiber ring laser sensors. Proceedings of SPIE, 2017, , .	0.8	О
38	Random fiber lasers: Application to fiber optic sensors networks. , 2017, , .		1
39	Simultaneous and quasi-independent strain and temperature sensor based on microstructured optical fiber. , 2017, , .		O
40	Tunable SESAM-Based Mode-Locked Soliton Fiber Laser in Linear Cavity by Axial-Strain Applied to an FBG. Journal of Lightwave Technology, 2017, 35, 5003-5009.	2.7	43
41	Study of Optical Fiber Sensors for Cryogenic Temperature Measurements. Sensors, 2017, 17, 2773.	2.1	20
42	ECOAL Projectâ€"Delivering Solutions for Integrated Monitoring of Coal-Related Fires Supported on Optical Fiber Sensing Technology. Applied Sciences (Switzerland), 2017, 7, 956.	1.3	13
43	Enhancement of the Sensitivity of a Volatile Organic Compounds MOF-Sensor by Means of Its Structure. Proceedings (mdpi), 2017, 1, .	0.2	2
44	Simultaneous temperature and vibration monitoring using an all-PM fiber loop mirror interferometer. Proceedings of SPIE, 2017, , .	0.8	0
45	Simultaneous Measurement of Humidity and Vibration Based on a Microwire Sensor System Using Fast Fourier Transform Technique. Journal of Lightwave Technology, 2016, 34, 4525-4530.	2.7	15
46	Tunable Dual-Wavelength Random Distributed Feedback Fiber Laser With Bidirectional Pumping Source. Journal of Lightwave Technology, 2016, 34, 4148-4153.	2.7	30
47	SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique. , 2016, , .		0
48	Random DFB Fiber Laser for Remote (200 km) Sensor Monitoring Using Hybrid WDM/TDM. Journal of Lightwave Technology, 2016, 34, 4430-4436.	2.7	35
49	Fiber cavity ring down and gain amplification effect. Photonic Sensors, 2016, 6, 324-327.	2.5	10
50	Modulated fiber ring laser and its application in high-sensitivity temperature sensors. Proceedings of SPIE, $2016, $, .	0.8	0
51	[INVITED] Multiwavelength operation of erbium-doped fiber-ring laser for temperature measurements. Optics and Laser Technology, 2016, 78, 134-138.	2.2	10
52	Monitoring Multiple Hi-Bi Sensing Fibers in a Single Fiber Loop Mirror. Journal of Lightwave Technology, 2016, 34, 4543-4549.	2.7	6
53	High-Resolution Sensor System Using a Random Distributed Feedback Fiber Laser. Journal of Lightwave Technology, 2016, 34, 4596-4602.	2.7	37
54	High-resolution transversal load sensor using a random distributed feedback fiber laser. , 2016, , .		0

#	Article	IF	Citations
55	High resolution polarization-independent high-birefringence fiber loop mirror sensor. Optics Express, 2015, 23, 30985.	1.7	16
56	Monitoring of coal waste piles with fiber optic sensing technology. , 2015, , .		1
57	Simultaneous Measurement of Strain and Temperature Using a Single Emission Line. Journal of Lightwave Technology, 2015, 33, 2426-2431.	2.7	7
58	Single-Longitudinal-Mode Dual Wavelength-Switchable Fiber Laser Based on Superposed Fiber Bragg Gratings. IEEE Photonics Journal, 2015, 7, 1-7.	1.0	18
59	High resolution fiber Bragg grating interrogation using a random distributed feedback fiber laser. Proceedings of SPIE, 2015, , .	0.8	1
60	Compound Lasing Fiber Optic Ring Resonators for Sensor Sensitivity Enhancement. Journal of Lightwave Technology, 2015, 33, 2690-2696.	2.7	5
61	Optimization of the Available Spectrum of a WDM Sensors Network Using a Mode-Locked Laser. Journal of Lightwave Technology, 2015, 33, 4627-4631.	2.7	11
62	Time and wavelength division multiplexing scheme for ultra-long sensing based on a cavity-modulated random DFB fiber laser. , 2015 , , .		1
63	Fiber optic sensing system for temperature and gas monitoring in coal waste pile combustion environments. Proceedings of SPIE, 2015, , .	0.8	1
64	Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror. Measurement: Journal of the International Measurement Confederation, 2015, 65, 50-53.	2.5	10
65	Fully Switchable Multi-Wavelength Fiber Lasers Based on Random Distributed Feedback for Sensors Interrogation. Journal of Lightwave Technology, 2015, 33, 2598-2604.	2.7	16
66	Real-Time FFT Analysis for Interferometric Sensors Multiplexing. Journal of Lightwave Technology, 2015, 33, 354-360.	2.7	39
67	Experimental and Numerical Characterization of a Hybrid Fabry-Pérot Cavity for Temperature Sensing. Sensors, 2015, 15, 8042-8053.	2.1	16
68	Experimental study of the SLM behavior and remote sensing applications of a multi-wavelength fiber laser topology based on DWDMs. Applied Physics B: Lasers and Optics, 2015, 118, 497-503.	1.1	10
69	Vertically coupled microring resonators using one epitaxial growth step and single-side lithography. Optics Express, 2015, 23, 5317.	1.7	8
70	Multimodal Interferometer Based on a Suspended Core Fiber for Simultaneous Measurement of Physical Parameters. Journal of Lightwave Technology, 2015, 33, 2468-2473.	2.7	30
71	Fiber laser sensor system based on a random mirror and a compound ring resonator for displacement measurements. , 2015, , .		0
72	Narrow-Linewidth Multi-Wavelength Random Distributed Feedback Laser. Journal of Lightwave Technology, 2015, 33, 3591-3596.	2.7	44

#	Article	IF	Citations
73	Stable dual-wavelength erbium fiber laser for temperature measurements. Proceedings of SPIE, 2015, , .	0.8	О
74	Nanowire humidity optical sensor system based on fast Fourier transform technique. Proceedings of SPIE, $2015, $, .	0.8	2
75	Monitoring multiple interferometric sensors multiplexed in a single fiber loop mirror. Proceedings of SPIE, 2015, , .	0.8	1
76	Stable Multiwavelength Erbium Fiber Ring Laser With Optical Feedback for Remote Sensing. Journal of Lightwave Technology, 2015, 33, 2439-2444.	2.7	55
77	Characterization of a hybrid Fabry-Perot Cavity based on a four-bridge double-Y-shape-core microstructured fiber. , 2014, , .		1
78	High sensitive micro-displacement intensity fiber sensor by using a multiwavelength erbium doped fiber ring laser based on optical add-drop multiplexers. , 2014 , , .		1
79	Simultaneous measurement of strain and temperature using a unique LPG-coupled fibre laser scheme. Proceedings of SPIE, 2014, , .	0.8	1
80	Fiber optic sensing system for monitoring of coal waste piles in combustion. Proceedings of SPIE, 2014, , .	0.8	2
81	Multi-wavelength erbium fiber ring laser with optical feedback for temperature measurements. Proceedings of SPIE, 2014, , .	0.8	0
82	Compound lasing fiber optic ring resonators for sensing. , 2014, , .		1
83	Dual-wavelength single-longitudinal-mode erbium fiber laser for temperature measurements. Optical Engineering, 2014, 53, 036106.	0.5	24
84	Simultaneous strain and temperature measure based on a single suspended core photonic crystal fiber. , 2014, , .		0
85	Fully switchable multi-wavelength fiber laser based interrogator system for remote and versatile fiber optic sensors multiplexing structures. Proceedings of SPIE, 2014, , .	0.8	2
86	Control of the strain sensitivity using a suspended core photonic crystal fiber sensing head., 2014,,.		0
87	Reinforced concrete structural corrosion monitoring using Hi-Bi photonic crystal fibres in a fiber loop structure. Proceedings of SPIE, 2014, , .	0.8	3
88	Remote PCF-based sensors multiplexing by using optical add–drop multiplexers. Optics and Laser Technology, 2014, 57, 9-11.	2.2	3
89	Fully switchable multiwavelength fiber laser assisted by a random mirror. Optics Letters, 2014, 39, 2020.	1.7	42
90	Comparative study of ring and random cavities for fiber lasers. Applied Optics, 2014, 53, 3501.	0.9	11

#	Article	IF	Citations
91	Dual-Wavelength Single-Longitudinal Mode Fiber Laser Using Phase-Shift Bragg Gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 161-165.	1.9	36
92	Micro-Displacement Sensor Combined With a Fiber Ring Interrogated by an Optical Time-Domain Reflectometer. IEEE Sensors Journal, 2014, 14, 793-796.	2.4	10
93	Robust Fiber-Optic Sensor Systems. , 2014, , .		1
94	An In-Reflection Strain Sensing Head Based on a Hi-Bi Photonic Crystal Fiber. Sensors, 2013, 13, 8095-8102.	2.1	13
95	Turning a low Q fiber resonator into a high-sensitivity displacement sensor using slow light concepts. Proceedings of SPIE, 2013, , .	0.8	0
96	Versatile all-fiber slow-light assisted sensor. , 2013, , .		0
97	Magnetic Field Sensor Based on Backscattered Intensity Using Ferrofluid. IEEE Photonics Technology Letters, 2013, 25, 1481-1484.	1.3	12
98	Fiber optic sensor networks. Optical Fiber Technology, 2013, 19, 689-699.	1.4	36
99	Ultra-Long Laser Systems for Remote Fiber Bragg Gratings Arrays Interrogation. IEEE Photonics Technology Letters, 2013, 25, 1362-1364.	1.3	36
100	Fiber optic and KNX sensors network for remote monitoring a new building cladding system. Automation in Construction, 2013, 30, 9-14.	4.8	9
101	A Switchable Erbium Doped Fiber Ring Laser System for Temperature Sensors Multiplexing. IEEE Sensors Journal, 2013, 13, 2279-2283.	2.4	9
102	Multiwavelength fiber ring laser based on optical add-drop multiplexers and a photonic crystal fiber Sagnac interferometer. Optics and Laser Technology, 2013, 48, 72-74.	2.2	10
103	Multi-wavelength fiber laser in single-longitudinal mode operation using a photonic crystal fiber Sagnac interferometer. Applied Physics B: Lasers and Optics, 2013, 110, 303-308.	1.1	29
104	Dual-wavelength highly doped fiber laser for temperature measurements. , 2013, , .		3
105	Switchable fiber optic laser system for high and low-strain fiber optic sensors remote multiplexing. Proceedings of SPIE, 2013, , .	0.8	1
106	Multiplexing of six micro-displacement suspended-core Sagnac interferometer sensors with a Raman-Erbium fiber laser. Optics Express, 2013, 21, 2971.	1.7	14
107	Single-longitudinal mode laser structure based on a very narrow filtering technique. Optics Express, 2013, 21, 10289.	1.7	19
108	Highly-efficient fully resonant vertical couplers for InP active-passive monolithic integration using vertically phase matched waveguides. Optics Express, 2013, 21, 22717.	1.7	9

#	Article	IF	Citations
109	Internal modulation of a random fiber laser: erratum. Optics Letters, 2013, 38, 2850.	1.7	1
110	Application of Remote Power-by-Light Switching in a Simplified BOTDA Sensor Network. Sensors, 2013, 13, 17434-17444.	2.1	4
111	Remote fiber optic switch powered by light for robust interrogation of fiber Bragg grating sensor networks. Measurement Science and Technology, 2013, 24, 094021.	1.4	6
112	All-fiber lasers through photonic crystal fibers. Nanophotonics, 2013, 2, 355-368.	2.9	13
113	Slow-Light and Enhanced Sensitivity in a Displacement Sensor Using a Lossy Fiber-Based Ring Resonator. Journal of Lightwave Technology, 2013, 31, 3752-3757.	2.7	9
114	Internal modulation of a random fiber laser. Optics Letters, 2013, 38, 1542.	1.7	70
115	Fiber optic sensor networks based on OADM devices with a bus configuration. Proceedings of SPIE, 2013, , .	0.8	0
116	Multi-Wavelength Fiber Lasers. , 2013, , .		4
117	Optical Fiber Networks for Remote Fiber Optic Sensors. Sensors, 2012, 12, 3929-3951.	2.1	58
118	200-km long fiber ring laser for multiplexing fiber Bragg gratings arrays. Proceedings of SPIE, 2012, , .	0.8	4
119	High-sensitivity PCF sensing head for strain measurement. , 2012, , .		0
120	Remote sensing networks for fiber optic sensors. , 2012, , .		1
121	Hybrid OTDR-Fiber Laser System for Remote Sensor Multiplexing. IEEE Sensors Journal, 2012, 12, 174-178.	2.4	17
122	Quasi distributed hybrid Brillouin fiber laser sensor system. Measurement Science and Technology, 2012, 23, 085202.	1.4	2
123	Simultaneous measurement of strain and temperature based on clover microstructured fiber loop mirror. Proceedings of SPIE, 2012, , .	0.8	3
124	Resilient optical fiber ladder network with OADMs to multiplex sensors: experimental validation of binary state connectivity analysis. , 2012 , , .		2
125	Remote resilient FBG multiplexing network controlled by a powered by light fiber optic switch. , 2012, , .		1
126	BOTDA sensor network with power by light remote switching. Proceedings of SPIE, 2012, , .	0.8	1

#	Article	IF	CITATIONS
127	Wide range group delay tuning in lossy fiber ring resonators. Proceedings of SPIE, 2012, , .	0.8	0
128	46-km-Long Raman Amplified Hybrid Double-Bus Network With Point and Distributed Brillouin Sensors. IEEE Sensors Journal, 2012, 12, 184-188.	2.4	11
129	Robust fiber-optic sensor networks. Photonic Sensors, 2012, 2, 366-380.	2.5	16
130	Optical Fiber Bus Protection Network to Multiplex Sensors: Experimental Validation of Self-Diagnosis. IEEE Sensors Journal, 2012, 12, 2737-2743.	2.4	8
131	Micro-Displacement Sensor Based on a Hollow-Core Photonic Crystal Fiber. Sensors, 2012, 12, 17497-17503.	2.1	24
132	High precision micro-displacement fiber sensor through a suspended-core Sagnac interferometer. Optics Letters, 2012, 37, 202.	1.7	84
133	Photonic Crystal Fibers for Sensing Applications. Journal of Sensors, 2012, 2012, 1-21.	0.6	232
134	Remote-Time Division Multiplexing of Bending Sensors Using a Broadband Light Source. Journal of Sensors, 2012, 2012, 1-6.	0.6	4
135	Concrete Beam Bending Test Monitorization Using a High Strain Fiber Optic Sensor. Journal of Lightwave Technology, 2012, 30, 1085-1089.	2.7	11
136	Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror. Journal of Lightwave Technology, 2012, 30, 1168-1172.	2.7	67
137	L-Band Multiwavelength Single-Longitudinal Mode Fiber Laser for Sensing Applications. Journal of Lightwave Technology, 2012, 30, 1173-1177.	2.7	53
138	Low noise dual-wavelength erbium fiber laser in single-longitudinal-mode operation. Applied Physics B: Lasers and Optics, 2012, 106, 563-567.	1.1	14
139	Remote (155 km) Fiber Bragg Grating Interrogation Technique Combining Raman, Brillouin, and Erbium Gain in a Fiber Laser. IEEE Photonics Technology Letters, 2011, 23, 621-623.	1.3	23
140	Bidirectional Dual-Wavelength Raman Fiber Ring Laser. IEEE Photonics Technology Letters, 2011, 23, 399-401.	1.3	6
141	L-band multiwavelength erbium-doped fiber ring laser for sensing applications. Proceedings of SPIE, 2011, , .	0.8	2
142	Temperature Raman laser sensor based in a suspended-core Fabry-Perot cavity and cooperative Rayleigh scattering., 2011,,.		0
143	Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities. Journal of Lightwave Technology, 2011, 29, 1482-1488.	2.7	61
144	Suspended-core fiber Sagnac combined dual-random mirror Raman fiber laser. Optics Express, 2011, 19, 11906.	1.7	33

#	Article	IF	CITATIONS
145	Ultralong 250 km remote sensor system based on a fiber loop mirror interrogated by an optical time-domain reflectometer. Optics Letters, 2011, 36, 4059.	1.7	25
146	Fiber Bragg grating interrogation technique for remote sensing (100km) using a hybrid Brillouin-Raman fiber laser. , 2011, , .		6
147	Raman distributed fiber laser based in Rayleigh scattering feedback., 2011,,.		O
148	Fiber optic sensors for monitoring a concrete beam high strain bending test. Proceedings of SPIE, 2011,	0.8	1
149	Long integral temperature Brillouin sensor for off- shore wind energy power supply lines. , 2011, , .		0
150	Double random mirror Hi–Bi photonic crystal fiber Sagnac based multiwavelength fiber laser. Applied Physics B: Lasers and Optics, 2011, 103, 771-775.	1.1	7
151	Optimization of the frequency-modulated continuous wave technique for referencing and multiplexing intensity-based fiber optic sensors. Measurement: Journal of the International Measurement Confederation, 2011, 44, 230-237.	2.5	5
152	Remote (250 km) Fiber Bragg Grating Multiplexing System. Sensors, 2011, 11, 8711-8720.	2.1	34
153	Multiplexing Techniques for FBG Sensors. , 2011, , 99-115.		9
154	Fiber optic sensor network for monitoring new building cladding systems. Proceedings of SPIE, 2010, ,	0.8	0
155	Stable multiwavelength fiber laser for referencing intensity sensor networks using multiple amplified ring resonators. Proceedings of SPIE, $2010, , .$	0.8	2
156	Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering. Applied Physics B: Lasers and Optics, 2010, 99, 391-395.	1.1	74
157	Stability performance of short cavity Er-doped fiber lasers. Optics Communications, 2010, 283, 1067-1070.	1.0	10
158	Stability comparison of two quadruple-wavelength switchable erbium-doped fiber lasers. Optical Fiber Technology, 2010, 16, 205-211.	1.4	13
159	Hybrid OTDR-fiber laser system for remote sensor multiplexing. , 2010, , .		3
160	Resilient long-distance sensor system using a multiwavelength Raman laser. Measurement Science and Technology, 2010, 21, 094017.	1.4	25
161	Experimental Optimization in Terms of Power Stability and Output Power of Highly Erbium-Doped Fiber Lasers with Single and Hybrid Cavities. Fiber and Integrated Optics, 2010, 29, 106-120.	1.7	6
162	Suspended-core Fabry-Perot temperature sensor interrogation through a dual wavelength Raman fiber laser. , $2010, , .$		0

#	Article	IF	Citations
163	Stabilization of Dual-Wavelength Erbium-Doped Fiber Ring Lasers by Single-Mode Operation. IEEE Photonics Technology Letters, 2010, 22, 368-370.	1.3	48
164	Long-range hybrid network with point and distributed Brillouin sensors using Raman amplification. Optics Express, 2010, 18, 9531.	1.7	29
165	Interrogation of a Suspended-Core Fabry–Perot Temperature Sensor Through a Dual Wavelength Raman Fiber Laser. Journal of Lightwave Technology, 2010, , .	2.7	23
166	Long-range hybrid double-bus network with point and distributed Brillouin sensors using Raman amplification. Proceedings of SPIE, 2010 , , .	0.8	0
167	Switchable multi-wavelength erbium-doped fiber laser for remote sensing. Proceedings of SPIE, 2009, ,	0.8	8
168	Intensity sensors multiplexing using a multiwavelength ring fiber laser with hybrid serial-tree configuration. Proceedings of SPIE, 2009, , .	0.8	0
169	Multi-zone temperature sensor using a multi-wavelength Brillouin fiber ring laser. , 2009, , .		1
170	An amplified coarse wavelength division multiplexing self-referencing sensor network based on phase-shifted FBGs in transmissive configuration. Measurement Science and Technology, 2009, 20, 034017.	1.4	11
171	Remote sensing network to detect and identify organic vapours. Proceedings of SPIE, 2009, , .	0.8	1
172	Resilient Amplified Double-Ring Optical Networks to Multiplex Optical Fiber Sensors. Journal of Lightwave Technology, 2009, 27, 1301-1306.	2.7	30
173	Stability Comparison of Two Ring Resonator Structures for Multiwavelength Fiber Lasers Using Highly Doped Er-Fibers. Journal of Lightwave Technology, 2009, 27, 2563-2569.	2.7	30
174	Frequency Modulated Continuous Wave System for Optical Fiber Intensity Sensors With Optical Amplification. IEEE Sensors Journal, 2009, 9, 1647-1653.	2.4	7
175	Stable four-wavelength ring resonator with hybrid serial-tree configuration for sensing applications. , 2009, , .		0
176	Comparison of the Stability of Ring Resonator Structures for Multiwavelength Fiber Lasers Using Raman or Er-Doped Fiber Amplification. IEEE Journal of Quantum Electronics, 2009, 45, 1551-1557.	1.0	17
177	Temperature sensing in multiple zones based on Brillouin fiber ring laser. Journal of Physics: Conference Series, 2009, 178, 012017.	0.3	3
178	Resilient long-distance sensor system using a multiwavelength Raman laser. , 2009, , .		1
179	Spectral properties of edge-emitting semiconductor laser subject to optical feedback from extremely short external cavity. Optical and Quantum Electronics, 2008, 40, 69-81.	1.5	5
180	Fiberâ€optic sensor active networking with distributed erbiumâ€doped fiber and Raman amplification. Laser and Photonics Reviews, 2008, 2, 480-497.	4.4	38

#	Article	IF	Citations
181	A High-Performance Optical Time-Domain Brillouin Distributed Fiber Sensor. IEEE Sensors Journal, 2008, 8, 1268-1272.	2.4	63
182	Compact and highly-efficient polarization independent vertical resonant couplers for active-passive monolithic integration. Optics Express, 2008, 16, 8350.	1.7	16
183	Amplified CWDM self-referencing sensor network based on phase-shifted FBGs in transmissive configuration., 2008,,.		3
184	Double cavity feedback and experimental observation of coherence resonance. , 2008, , .		0
185	Polarization control and stabilization of VCSELs by means of optical feedback from an extremely short external cavity., 2007,,.		0
186	A quasi-distributed level sensor based on a bent side-polished plastic optical fibre cable. Measurement Science and Technology, 2007, 18, 2261-2267.	1.4	59
187	Polarized optical feedback from an extremely short external cavity for controlling and stabilizing the polarization of vertical cavity surface emitting lasers. Applied Physics Letters, 2007, 90, 121104.	1.5	14
188	Experimental Evidence of Coherence Resonance in a Time-Delayed Bistable System. Physical Review Letters, 2007, 99, 023903.	2.9	48
189	Role of external cavity reflectivity for achieving polarization control and stabilization of vertical cavity surface emitting laser. Applied Physics Letters, 2007, 90, 031117.	1.5	9
190	A resilient Raman amplified double ring network for multiplexing fiber Bragg grating sensors. Proceedings of SPIE, 2007, , .	0.8	3
191	Double Raman Amplified Bus Networks for Wavelength-Division Multiplexing of Fiber-Optic Sensors. Journal of Lightwave Technology, 2007, 25, 733-739.	2.7	11
192	Optical Fibre Bus Protection Architecture for the Networking of Sensors., 2007,,.		4
193	Gain equalization methods in erbium-doped fiber amplifiers. Microwave and Optical Technology Letters, 2007, 49, 1346-1349.	0.9	0
194	Adaptive filters applied to the interrogation of photonic sensors. IEEE Sensors Journal, 2006, 6, 748-754.	2.4	4
195	Tailoring light polarization in vertical cavity surface emitting lasers by isotropic optical feedback from an extremely short external cavity. Applied Physics Letters, 2006, 89, 091102.	1.5	11
196	Comparison of wavelength-division-multiplexed distributed fiber Raman amplifier networks for sensors. Optics Express, 2006, 14, 1401.	1.7	9
197	Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity., 2006, 6185, 299.		0
198	Amplified Fiber-Optic Networks for Sensor Multiplexing. Japanese Journal of Applied Physics, 2006, 45, 6626-6631.	0.8	7

#	Article	IF	CITATIONS
199	Multiwavelength Raman Fiber Ring Lasers with Bragg-grating Sensor Multiplexing Capability. Journal of Optical Communications, 2006, 27, .	4.0	4
200	Highly Nonlinear Fiber as Pre-amplifier in Distributed Fiber Raman Amplifier Bus Networks for Sensors Multiplexing. , 2006, , .		0
201	Spectral Evolution of Long-Period Fiber Grating during Written Process and their Influence in the Sensitivity. , 2006, , .		1
202	Demultiplexing of Interferometrically Interrogated Fiber Bragg Grating Sensors: FFT vs MUSIC. , 2006, , .		0
203	Temperature dependence of light polarization in active erbium-doped fiber. Microwave and Optical Technology Letters, 2005, 45, 246-249.	0.9	1
204	Simple low-loss waveguide bends using ARROW effect. Applied Physics B: Lasers and Optics, 2005, 80, 745-748.	1.1	8
205	WDM bi-directional transmission over 35 km amplified fiber-optic bus network using Raman amplification for optical sensors. Optics Express, 2005, 13, 9666.	1.7	13
206	Wavelength-division-multiplexed distributed fiber Raman amplifier bus network for sensors. , 2005, 5855, 242.		10
207	Optical Communications in the Universidad Publica de Navarra. Fiber and Integrated Optics, 2004, 23, 97-108.	1.7	0
208	Application of the fast Fourier transform and parametric frequency estimation for the measurement of the Bragg wavelength of interferometrically interrogated fiber Bragg grating sensors., 2004, 5502, 492.		1
209	High-resolution absolute-distance measurements using multiple-tunable fiber Bragg gratings. , 2004, , .		0
210	Optical gateway for intelligent buildings: a new open-up window to the optical fibre sensors market?. , 2004, , .		1
211	Compact spot-size converters with fiber-matched antiresonant reflecting optical waveguides. Applied Optics, 2003, 42, 4841.	2.1	7
212	Transparent network for hybrid multiplexing of fiber Bragg gratings and intensity-modulated fiber-optic sensors. Applied Optics, 2003, 42, 5040.	2.1	3
213	Interrogation of wavelength multiplexed fiber bragg gratings using spectral filtering and amplitude-to-phase optical conversion. Journal of Lightwave Technology, 2003, 21, 127-131.	2.7	21
214	A new spot-size converter concept using fiber-matched antiresonant reflecting optical waveguides. Journal of Lightwave Technology, 2003, 21, 269-274.	2.7	7
215	Transmitted Optical Power through a Tapered Single-Mode Fiber under Dynamic Bending Effects. Fiber and Integrated Optics, 2003, 22, 173-187.	1.7	13
216	Comparative analysis of wavelength-multiplexed photonic-sensor networks using fused biconical WDMS. IEEE Sensors Journal, 2003, 3, 475-483.	2.4	4

#	Article	IF	Citations
217	Simple-to-fabricate and highly efficient spot-size converters using antiresonant reflecting optical waveguides. , 2003, , .		O
218	Transmitted Optical Power through a Tapered Single-Mode Fiber under Dynamic Bending Effects. Fiber and Integrated Optics, 2003, 22, 173-187.	1.7	0
219	Fiber Bragg grating–based self-referencing technique for wavelength-multiplexed intensity sensors. Optics Letters, 2002, 27, 222.	1.7	94
220	1.55-νm InP-InGaAsP Fabry-Perot lasers with integrated spot size converters using antiresonant reflecting optical waveguides. IEEE Photonics Technology Letters, 2002, 14, 1043-1045.	1.3	5
221	Mode-expanded 1.55-νm InP-InGaAsP Fabry-Perot lasers using ARROW waveguides for efficient fiber coupling. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 1389-1398.	1.9	7
222	Optical filter design for multiwavelength erbium-doped fiber ring lasers. Optics Communications, 2002, 208, 167-172.	1.0	5
223	Low-cost optical amplitude modulator based on a tapered single-mode optical fiber. Applied Optics, 2001, 40, 228.	2.1	14
224	Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability. Journal of Lightwave Technology, 2001, 19, 553-558.	2.7	215
225	<title>Polarimetry of plastic optical fibers</title> ., 2001, 4595, 213.		3
226	Modeling of InGaAsP–InP 1.55Âμm lasers with integrated mode expanders using fiber-matched leaky waveguides. Applied Physics B: Lasers and Optics, 2001, 73, 585-588.	1.1	4
227	Experimental assessment of access guide first-order mode effect on multimode interference couplers. Optical Engineering, 2001, 40, 1160.	0.5	5
228	Multiplexing and transmission of RF signals using an optical fiber. Ultrasonics, 2000, 38, 542-545.	2.1	0
229	Optical fiber strain gauge based on a tapered single-mode fiber. Sensors and Actuators A: Physical, 2000, 79, 90-96.	2.0	46
230	Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sensors and Actuators B: Chemical, 2000, 69, 127-131.	4.0	239
231	Barrier sensor based on plastic optical fiber to determine the wind speed at a wind generator. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 773-779.	1.9	16
232	Tapered optical-fiber-based pressure sensor. Optical Engineering, 2000, 39, 2241.	0.5	33
233	Improved double-fiber-bus with distributed optical amplification for wavelength-division multiplexing of photonic sensors. IEEE Photonics Technology Letters, 2000, 12, 1270-1272.	1.3	18
234	Fiber-based 205-mW (27% efficiency) power-delivery system for an all-fiber network with optoelectronic sensor units. Applied Optics, 1999, 38, 2463.	2.1	42

#	Article	IF	Citations
235	Single and double distributed optical amplifier fiber bus networks with wavelength-division multiplexing for photonic sensors. Optics Letters, 1999, 24, 805.	1.7	28
236	Folded fibre bus interconnects with distributed amplification. Optics Communications, 1998, 152, 31-35.	1.0	1
237	Single and double distributed optical amplifier fiber bus networks with wavelength division multiplexing for photonic sensors. Journal of Lightwave Technology, 1998, 16, 485-489.	2.7	14
238	<title>Experimental results toward development of humidity sensors by using a hygroscopic material on biconically tapered optical fiber $<$ /title>. , 1998, , .		14
239	<title>Experimental design rules for implementing biconically tapered single mode optical fibre displacement sensors</title> ., 1998,,.		12
240	Accessing guide first-order mode influence and optimize tolerances in multimode interference couplers., 1998, 3491, 386.		3
241	Optical intensity induced shutter in photochromic-doped sol-gel gel-glass waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3, 780-788.	1.9	6
242	Tapered optical-fiber temperature sensor. Microwave and Optical Technology Letters, 1996, 11, 93-95.	0.9	43
243	Design and application of double amplified recirculating ring structure for hybrid fibre buses. Optical and Quantum Electronics, 1995, 27, 847-857.	1.5	6
244	Amplified Recirculating Delay Lines as Fiber-optic Decoders in TV Systems. Optical Fiber Technology, 1995, 1, 369-372.	1.4	1
245	Gel-glass photochromic optical delay generator. , 1995, , .		1
246	Performance parameters and applications of a modified amplified recirculating delay line. Fiber and Integrated Optics, 1995, 14, 347-358.	1.7	4
247	Optically tunable fiber optic delay generator utilizing photochromic doped solâ€gel gelâ€glass delay line. Journal of Applied Physics, 1995, 77, 2804-2805.	1.1	26
248	Analysis of double-parallel amplified recirculating optical-delay lines. Applied Optics, 1994, 33, 1015.	2.1	11
249	Amplified fiber-optic recirculating delay lines. Journal of Lightwave Technology, 1994, 12, 294-305.	2.7	38
250	Wavelength-division-multiplexed distributed optical fiber amplifier bus network for data and sensors. Optics Letters, 1993, 18, 1159.	1.7	30
251	Design of a lossy tunable wavelength demultiplexer utilizing MgO:Ti:LiNbO/sub 3/ depressed index waveguides. Journal of Lightwave Technology, 1993, 11, 2080-2086.	2.7	0
252	<title>Novel technique for analysis and design of diffused Ti:LiNbO<formula><inf><roman>3</roman></inf></formula> optical planar waveguides</title> ., 1991, 1374, 144.		0

#	Article	IF	CITATIONS
253	<title>Design of novel integrated optic devices utilizing depressed index waveguides</title> ., 1991,,.		O
254	Depressed-index waveguides (DIW's) in integrated optics. Journal of Lightwave Technology, 1990, 8, 1779-1791.	2.7	4
255	Spectral behavior of a low-cost all-fiber component based on untapered multifiber unions. IEEE Photonics Technology Letters, 1989, 1, 184-187.	1.3	12
256	Multimode interference filter to solve degradation on coupler common-mode rejection. , 0, , .		4
257	Bragg-grating interrogation scheme using spectral filtering and amplitude-to-phase optical conversion. , 0, , .		6
258	Low cost electric field optical fiber detector. , 0, , .		3