Zhongqiang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892860/publications.pdf

Version: 2024-02-01

		257101	233125
58	2,074 citations	24	45
papers	citations	h-index	g-index
50	50	F0	2620
59	59	59	2620
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selfâ€Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness. Advanced Materials, 2011, 23, 1117-1121.	11.1	363
2	Responsive Double Network Hydrogels of Interpenetrating DNA and CB[8] Host–Guest Supramolecular Systems. Advanced Materials, 2015, 27, 3298-3304.	11.1	201
3	Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nature Materials, 2005, 4, 486-490.	13.3	131
4	DNA-based switchable devices and materials. NPG Asia Materials, 2011, 3, 109-114.	3.8	101
5	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 1586-1589.	7.2	85
6	Reversibly tuning the mechanical properties of a DNA hydrogel by a DNA nanomotor. Chemical Communications, 2016, 52, 10668-10671.	2.2	68
7	Remote Controlling DNA Hydrogel by Magnetic Field. ACS Applied Materials & Samp; Interfaces, 2017, 9, 1995-2000.	4.0	59
8	Spatiotemporally Controlled Release of Rhoâ€Inhibiting C3 Toxin from a Protein–DNA Hybrid Hydrogel for Targeted Inhibition of Osteoclast Formation and Activity. Advanced Healthcare Materials, 2017, 6, 1700392.	3.9	57
9	Amphiphilic DNA-dendron hybrid: a new building block for functional assemblies. Soft Matter, 2011, 7, 7187.	1.2	55
10	Thermal and UV Shape Shifting of Surface Topography. Journal of the American Chemical Society, 2006, 128, 1074-1075.	6.6	52
11	Ultrafast, Highâ€Contractile Electrothermalâ€Driven Liquid Crystal Elastomer Fibers towards Artificial Muscles. Small, 2021, 17, e2103700.	5.2	52
12	A novel, label-free liquid crystal biosensor for Parkinson's disease related alpha-synuclein. Chemical Communications, 2020, 56, 5441-5444.	2.2	49
13	Liquid Crystal Elastomer Twist Fibers toward Rotating Microengines. Advanced Materials, 2022, 34, e2107840.	11.1	49
14	A supramolecular hydrogel with identical cross-linking point density but distinctive rheological properties. Materials Chemistry Frontiers, 2017, 1, 654-659.	3.2	38
15	Heterogeneous nucleants for crystallogenesis and bioseparation. Current Opinion in Chemical Engineering, 2015, 8, 69-75.	3.8	36
16	Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2072-2076.	7.2	36
17	Terminal PEGylated DNA–Gold Nanoparticle Conjugates Offering High Resistance to Nuclease Degradation and Efficient Intracellular Delivery of DNA Binding Agents. ACS Applied Materials & Interfaces, 2015, 7, 18707-18716.	4.0	35
18	Using Small Molecules to Prepare Vesicles with Designable Shapes and Sizes via Frameâ€Guided Assembly Strategy. Small, 2015, 11, 3768-3771.	5.2	33

#	Article	IF	CITATIONS
19	Design of Biomolecular Interfaces Using Liquid Crystals Containing Oligomeric Ethylene Glycol. Advanced Functional Materials, 2010, 20, 2098-2106.	7.8	31
20	Stability study of tubular DNA origami in the presence of protein crystallisation buffer. RSC Advances, 2015, 5, 58734-58737.	1.7	30
21	A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale. Nanoscale, 2016, 8, 3944-3948.	2.8	30
22	Bioinspired Construction of Artificial Cardiac Muscles Based on Liquid Crystal Elastomer Fibers. Advanced Materials Technologies, 2022, 7, 2100934.	3.0	29
23	Spontaneous Formation of Water Droplets at Oilâ^'Solid Interfaces. Langmuir, 2010, 26, 13797-13804.	1.6	28
24	A brief review of methods for terminal functionalization of DNA. Methods, 2014, 67, 116-122.	1.9	27
25	DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & amp; Interfaces, 2018, 10, 44240-44246.	4.0	23
26	Simple, rapid and sensitive detection of Parkinson's disease related alpha-synuclein using a DNA aptamer assisted liquid crystal biosensor. Soft Matter, 2021, 17, 4842-4847.	1.2	23
27	The Integration of Sensing and Actuating based on a Simple Design Fiber Actuator towards Intelligent Soft Robots. Advanced Materials Technologies, 2022, 7, 2101260.	3.0	23
28	Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology. NPG Asia Materials, 2015, 7, e161-e161.	3.8	21
29	Preparation and Self-Assembly of Supramolecular Coil–Rod–Coil Triblock Copolymer PPO–dsDNA–PPO. Macromolecules, 2015, 48, 7550-7556.	2.2	19
30	The Assembly of DNA Amphiphiles at Liquid Crystal-Aqueous Interface. Nanomaterials, 2016, 6, 229.	1.9	19
31	Beyond displays: The recent progress of liquid crystals for bio/chemical detections. Science Bulletin, 2013, 58, 2557-2562.	1.7	18
32	Influence of Tetra(ethylene glycol) (EG ₄) Substitution at the Loop Region on the Intramolecular DNA <i>ii-Motif. Macromolecules, 2012, 45, 2643-2647.</i>	2.2	17
33	Investigation of the Assembly Behavior of an Amphiphilic Lipopeptide at the Liquid Crystal–Aqueous Interface. Langmuir, 2019, 35, 2490-2497.	1.6	17
34	Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles. Bioorganic and Medicinal Chemistry, 2014, 22, 4391-4394.	1.4	16
35	Crystallisation via novel 3D nanotemplates as a tool for protein purification and bio-separation. Journal of Crystal Growth, 2017, 469, 42-47.	0.7	15
36	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie, 2017, 129, 1608-1611.	1.6	14

#	Article	IF	CITATIONS
37	Preparation of anisotropic conductive graphene aerogel/polydimethylsiloxane composites as LEGO® modulars. European Polymer Journal, 2019, 112, 487-492.	2.6	13
38	Investigating the Role of Glass and Quartz Substrates on the Formation of Interfacial Droplets. Journal of Physical Chemistry C, 2019, 123, 1151-1159.	1.5	13
39	Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, 2094-2098.	1.6	11
40	Enhancement of Lysozyme Crystallization Using DNA as a Polymeric Additive. Crystals, 2019, 9, 186.	1.0	10
41	Synergistic Effect of Graphene Oxide and Different Valence of Cations on Promoting Catalase Crystallization. Crystal Growth and Design, 2019, 19, 2838-2844.	1.4	9
42	Simple and Rapid Detection of Ibuprofen─A Typical Pharmaceuticals and Personal Care Products─by a Liquid Crystal Aptasensor. Langmuir, 2022, 38, 282-288.	1.6	9
43	A facile method for preparation of emulsion using the high gravity technique. Journal of Colloid and Interface Science, 2017, 506, 120-125.	5.0	8
44	An Overview of Selfâ€Assembly and Morphological Regulation of Amphiphilic DNA Organic Hybrids. Chinese Journal of Chemistry, 2015, 33, 511-516.	2.6	6
45	Improving the sensitivity for DNA sensing based on double-anchored DNA modified gold nanoparticles. Science China Chemistry, 2016, 59, 765-769.	4.2	6
46	Controlling the Accumulation of Water at Oil–Solid Interfaces with Gradient Coating. Journal of Physical Chemistry B, 2017, 121, 6766-6772.	1.2	6
47	Gravity on Crystallization of Lysozyme: Slower or Faster?. Crystal Growth and Design, 2019, 19, 7402-7410.	1.4	6
48	Protein crystal occurrence domains in selective protein crystallisation for bio-separation. CrystEngComm, 2020, 22, 4566-4572.	1.3	6
49	Spatially arranging interfacial droplets at the oil–solid interface. Soft Matter, 2020, 16, 107-113.	1.2	3
50	Combination of liquid crystal and deep learning reveals distinct signatures of Parkinson's diseaseâ€related wildâ€type αâ€synuclein and six pathogenic mutants. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
51	The growth and shrinkage of water droplets at the oil-solid interface. Journal of Colloid and Interface Science, 2021, 584, 738-748.	5.0	2
52	DNA HYDROGELS: Self-Assembled DNA Hydrogels with Designable Thermal and Enzymatic Responsiveness (Adv. Mater. 9/2011). Advanced Materials, 2011, 23, 1116-1116.	11.1	1
53	Drug Delivery: Efficient, pHâ€Triggered Drug Delivery Using a pHâ€Responsive DNAâ€Conjugated Gold Nanoparticle (Adv. Healthcare Mater. 2/2013). Advanced Healthcare Materials, 2013, 2, 380-380.	3.9	1
54	Modified Voronoi Analysis of Spontaneous Formation of Interfacial Droplets on Immersed Oil–Solid Substrates. Langmuir, 2020, 36, 5400-5407.	1.6	1

#	Article	IF	CITATION
55	DNA-Modified Liquid Crystal Droplets. Biosensors, 2022, 12, 275.	2.3	1
56	DNA Hydrogels: A Writable Polypeptide–DNA Hydrogel with Rationally Designed Multiâ€modification Sites (Small 9â€10/2015). Small, 2015, 11, 1224-1224.	5.2	0
57	Frontispiz: Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, .	1.6	O
58	Frontispiece: Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0