Richard C Zimmerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892856/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vertical artifacts in high-resolution WorldView-2 and WorldView-3 satellite imagery of aquatic systems. International Journal of Remote Sensing, 2022, 43, 1199-1225.	2.9	7
2	Temporal Stability of Seagrass Extent, Leaf Area, and Carbon Storage in St. Joseph Bay, Florida: a Semi-automated Remote Sensing Analysis. Estuaries and Coasts, 2022, 45, 2082-2101.	2.2	11
3	The influence of particle concentration and bulk characteristics on polarized oceanographic lidar measurements. Limnology and Oceanography, 2022, 67, 1374-1387.	3.1	3
4	Simulated response of St. Joseph Bay, Florida, seagrass meadows and their belowground carbon to anthropogenic and climate impacts. Marine Environmental Research, 2022, 179, 105694.	2.5	3
5	Scaling up: Predicting the Impacts of Climate Change on Seagrass Ecosystems. Estuaries and Coasts, 2021, 44, 558-576.	2.2	17
6	Heating rate modulates the metabolic response of the staghorn coral Acropora cervicornis (Lamarck,) Tj ETQqO	0 0 ₁ .gBT /0	Overlock 10 T
7	An Active Learning Model for Seagrass Detection in Remote Senseing Imagery. , 2021, , .		1
8	Ebullition of oxygen from seagrasses under supersaturated conditions. Limnology and Oceanography, 2020, 65, 314-324.	3.1	27
9	Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment, 2020, 250, 112036.	11.0	26
10	Quantifying Seagrass Distribution in Coastal Water with Deep Learning Models. Remote Sensing, 2020, 12, 1581.	4.0	12
11	Metabolic Profiling Reveals Biochemical Pathways Responsible for Eelgrass Response to Elevated CO2 and Temperature. Scientific Reports, 2020, 10, 4693.	3.3	12
12	Semi-supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas. Data Science and Engineering, 2020, 5, 111-125.	6.4	13
13	Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom. Applied Optics, 2020, 59, 4650.	1.8	20
14	Closing the oxygen mass balance in shallow coastal ecosystems. Limnology and Oceanography, 2019, 64, 2694-2708.	3.1	18
15	Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science, 2019, 225, 106188.	2.1	18
16	Adaptive signatures in thermal performance of the temperate coral <i>Astrangia poculata</i> (Ellis) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5

17	Semi-Supervised Adversarial Domain Adaptation for Seagrass Detection in Multispectral Images. , 2019, ,		3
18	Carbon Budget of Tidal Wetlands, Estuaries, and Shelf Waters of Eastern North America. Global Biogeochemical Cycles, 2018, 32, 389-416.	4.9	147

RICHARD C ZIMMERMAN

#	Article	IF	CITATIONS
19	Seagrass Propeller Scar Detection using Deep Convolutional Neural Network. , 2018, , .		1
20	DeepCoast: Quantifying Seagrass Distribution in Coastal Water Through Deep Capsule Networks. Lecture Notes in Computer Science, 2018, , 404-416.	1.3	9
21	Seagrass Detection in Coastal Water Through Deep Capsule Networks. Lecture Notes in Computer Science, 2018, , 320-331.	1.3	14
22	Light Availability and Phytoplankton Growth Beneath Arctic Sea Ice: Integrating Observations and Modeling. Journal of Geophysical Research: Oceans, 2018, 123, 3651-3667.	2.6	45
23	Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecological Applications, 2018, 28, 1694-1714.	3.8	54
24	Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboard lidar. Remote Sensing of Environment, 2018, 215, 85-96.	11.0	42
25	Systems Biology and the Seagrass Paradox: Adaptation, Acclimation, and Survival of Marine Angiosperms in a Changing Ocean Climate. , 2017, , 167-188.		3
26	Twenty-first century climate change and submerged aquatic vegetation in a temperate estuary: the case of Chesapeake Bay. Ecosystem Health and Sustainability, 2017, 3, .	3.1	11
27	Mixing effects on light exposure in a large″ake epilimnion: A preliminary dualâ€dye study. Limnology and Oceanography: Methods, 2016, 14, 542-554.	2.0	4
28	Predicting effects of ocean warming, acidification, and water quality on <scp>C</scp> hesapeake region eelgrass. Limnology and Oceanography, 2015, 60, 1781-1804.	3.1	52
29	Predicting carbon isotope discrimination in <scp>E</scp> elgrass (<scp><i>Z</i></scp> <i>ostera) Tj ETQq1 1 0.7 Oceanography, 2015, 60, 1875-1889.</i>	784314 rg 3.1	BT /Overlock 19
30	Evaluating Light Availability, Seagrass Biomass, and Productivity Using Hyperspectral Airborne Remote Sensing in Saint Joseph's Bay, Florida. Estuaries and Coasts, 2014, 37, 1467-1489.	2.2	55
31	<i>î´</i> ¹³ C is a signature of light availability and photosynthesis in seagrass. Limnology and Oceanography, 2012, 57, 441-448.	3.1	32
32	The Optical Properties of Greater Florida Bay: Implications for Seagrass Abundance. Estuaries and Coasts, 2011, 34, 1150-1160.	2.2	27
33	The widespread occurrence of coupled carbonate dissolution/reprecipitation in surface sediments on the Bahamas Bank. Numerische Mathematik, 2010, 310, 492-521.	1.4	75
34	Estimates of primary production by remote sensing in the Arctic Ocean: Assessment of accuracy with passive and active sensors. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 1243-1254.	1.4	43
35	Rates of carbonate dissolution in permeable sediments estimated from poreâ€water profiles: The role of sea grasses. Limnology and Oceanography, 2008, 53, 549-565.	3.1	71
36	Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical constraints on photoacclimation. Aquatic Botany, 2003, 75, 261-274.	1.6	52

RICHARD C ZIMMERMAN

#	Article	IF	CITATIONS
37	A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnology and Oceanography, 2003, 48, 568-585.	3.1	111
38	Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by highâ€resolution airborne imagery. Limnology and Oceanography, 2003, 48, 444-455.	3.1	236
39	Effects of epiphyte load on optical properties and photosynthetic potential of the seagrasses <i>Thalassia testudinum</i> Banks ex König and <i>Zostera marina</i> L Limnology and Oceanography, 2003, 48, 456-463.	3.1	88
40	Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnology and Oceanography, 2002, 47, 1751-1763.	3.1	119
41	Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. Journal of Experimental Marine Biology and Ecology, 2001, 265, 203-217.	1.5	132
42	Impacts of CO2 Enrichment on Productivity and Light Requirements of Eelgrass. Plant Physiology, 1997, 115, 599-607.	4.8	212
43	PHOTOSYNTHETIC RESPONSE OF THE GIANT KELP MACROCYSTIS PYRIFERA (PHAEOPHYCEAE) TO ULTRAVIOLET RADIATION1. Journal of Phycology, 1996, 32, 614-620.	2.3	34
44	Top-down impact through a bottom-up mechanism: the effect of limpet grazing on growth, productivity and carbon allocation of Zostera marina L. (eelgrass). Oecologia, 1996, 107, 560-567.	2.0	58
45	Carbon Partitioning in Eelgrass (Regulation by Photosynthesis and the Response to Daily Light-Dark) Tj ETQq1 1 (0.784314 4.8	rgßT /Over <mark>l</mark> o
46	Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in San Francisco Bay. Aquatic Botany, 1991, 39, 353-366.	1.6	84
47	Thermal acclimation and whole-plant carbon balance in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and Ecology, 1989, 130, 93-109.	1.5	143
48	Evaluation of variance approximation techniques for non-linear photosynthesis?irradiance models. Marine Biology, 1987, 95, 209-215.	1.5	48
49	Light and Photosynthesis in Seagrass Meadows. , 0, , 303-321.		6