Stephen P Best

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892825/publications.pdf Version: 2024-02-01

STEDHEN D REST

#	Article	IF	CITATIONS
1	Electron Transfer at a Dithiolate-Bridged Diiron Assembly:Â Electrocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2004, 126, 16988-16999.	13.7	303
2	A di-iron dithiolate possessing structural elements of the carbonyl/cyanide sub-site of the H-centre of Fe-only hydrogenase. Chemical Communications, 1999, , 2285-2286.	4.1	235
3	Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour, 1992, 16, 66-73.	0.4	160
4	Modeling [Feâ^'Fe] Hydrogenase:  Evidence for Bridging Carbonyl and Distal Iron Coordination Vacancy in an Electrocatalytically Competent Proton Reduction by an Iron Thiolate Assembly That Operates through Fe(0)â^'Fe(II) Levels. Journal of the American Chemical Society, 2007, 129, 11085-11092.	13.7	114
5	Transient FTIR spectroelectrochemical and stopped-flow detection of a mixed valence {Fe(i)–Fe(ii)} bridging carbonyl intermediate with structural elements and spectroscopic characteristics of the di-iron sub-site of all-iron hydrogenase. Chemical Communications, 2002, , 700-701.	4.1	94
6	Spectroelectrochemistry of hydrogenase enzymes and related compounds. Coordination Chemistry Reviews, 2005, 249, 1536-1554.	18.8	78
7	Electrocatalytic Proton Reduction by Phosphido-Bridged Diiron Carbonyl Compounds:Â Distant Relations to the H-Cluster?. Inorganic Chemistry, 2004, 43, 5635-5644.	4.0	75
8	Assignment of Molecular Structures to the Electrochemical Reduction Products of Diiron Compounds Related to [Feâ^'Fe] Hydrogenase:Â A Combined Experimental and Density Functional Theory Study. Inorganic Chemistry, 2007, 46, 384-394.	4.0	73
9	Steps along the Path to Dihydrogen Activation at [FeFe] Hydrogenase Structural Models:Â Dependence of the Core Geometry on Electrocatalytic Proton Reduction. Inorganic Chemistry, 2007, 46, 1741-1750.	4.0	59
10	Electron-Transfer Chemistry of the Iron–Molybdenum Cofactor of Nitrogenase: Delocalized and Localized Reduced States of FeMoco which Allow Binding of Carbon Monoxide to Iron and Molybdenum. Chemistry - A European Journal, 2003, 9, 76-87.	3.3	56
11	On the structure of a proposed mixed-valent analogue of the diiron subsite of [FeFe]-hydrogenase. Chemical Communications, 2007, , 4348.	4.1	56
12	Electrocatalysis of hydrogen evolution by synthetic diiron units using weak acids as the proton source: Pathways of doubtful relevance to enzymic catalysis by the diiron subsite of [FeFe] hydrogenase. Comptes Rendus Chimie, 2008, 11, 852-860.	0.5	48
13	Infrared reflection absorption spectroâ€electrochemical cell for the in situ study of redoxâ€active species at variable temperature. Review of Scientific Instruments, 1987, 58, 2071-2074.	1.3	38
14	Infrared spectroelectrochemical studies of bis(1,2-dithiolene) complexes of transition metals. Journal of the Chemical Society Dalton Transactions, 1993, , 2267.	1.1	28
15	Synergic Binding of Carbon Monoxide and Cyanide to the FeMo Cofactor of Nitrogenase: Relic Chemistry of an Ancient Enzyme?. Chemistry - A European Journal, 2004, 10, 4770-4776.	3.3	27
16	Stereochemical analysis of ferrocene and the uncertainty of fluorescence XAFS data. Journal of Synchrotron Radiation, 2012, 19, 145-158.	2.4	27
17	Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV) Tj ETQq1	1 0.78431 1.4	4 rgBT /Over
18	Structural Insight into Redox Dynamics of Copper Bound N-Truncated Amyloid-Î ² Peptides from <i>in</i>	4.0	25

Situ</i> X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 11422-11435.

Stephen P Best

#	Article	IF	CITATIONS
19	Spectroelectrochemical cell for the study of interactions between redox-activated species and moderate pressures of gaseous substrates. Journal of Electroanalytical Chemistry, 2002, 535, 57-64.	3.8	23
20	Electrocatalytic proton reduction by dithiolate-bridged diiron carbonyl complexes: a connection to the H-cluster?. Biochemical Society Transactions, 2005, 33, 3-6.	3.4	21
21	Accurate X-ray Absorption Spectra of Dilute Systems: Absolute Measurements and Structural Analysis of Ferrocene and Decamethylferrocene. Journal of Physical Chemistry C, 2016, 120, 9399-9418.	3.1	20
22	XAS spectroelectrochemistry: reliable measurement of X-ray absorption spectra from redox manipulated solutions at room temperature. Journal of Synchrotron Radiation, 2016, 23, 743-750.	2.4	16
23	Applications of X-ray absorption spectroscopy to biologically relevant metal-based chemistry. Radiation Physics and Chemistry, 2010, 79, 185-194.	2.8	14
24	High-accuracy X-ray absorption spectra from m <i>M</i> solutions of nickel (II) complexes with multiple solutions using transmission XAS. Journal of Synchrotron Radiation, 2015, 22, 1008-1021.	2.4	14
25	Integration of EXAFS, Spectroscopic, and DFT Techniques for Elucidation of the Structure of Reactive Diiron Compounds. Australian Journal of Chemistry, 2006, 59, 263.	0.9	13
26	XAFS and DFT Characterisation of Protonated Reduced Fe Hydrogenase Analogues and Their Implications for Electrocatalytic Proton Reduction. European Journal of Inorganic Chemistry, 2011, 2011, 1128-1137.	2.0	13
27	Conformation Analysis of Ferrocene and Decamethylferrocene via Full-Potential Modeling of XANES and XAFS Spectra. Journal of Physical Chemistry Letters, 2016, 7, 2792-2796.	4.6	13
28	Reinterpretation of Dynamic Vibrational Spectroscopy to Determine the Molecular Structure and Dynamics of Ferrocene. Chemistry - A European Journal, 2016, 22, 18019-18026.	3.3	13
29	Polymerisation effects in the extraction of Co(II) into polymer inclusion membranes containing Cyanex 272. Structural studies of the Cyanex 272–Co(II) complex. Journal of Membrane Science, 2016, 497, 377-386.	8.2	13
30	Molecular Features of Colll Tetra- and Pentammines Affect Their Influence on DNA Structure. European Journal of Inorganic Chemistry, 2001, 2001, 2311-2316.	2.0	12
31	Microanalysis of artworks: IR microspectroscopy of paint cross-sections. Vibrational Spectroscopy, 2010, 53, 77-82.	2.2	11
32	The effects of gold nanoparticles concentrations and beam quality/LET on dose enhancement when irradiated with X-rays and protons using alanine/EPR dosimetry. Radiation Measurements, 2017, 106, 352-356.	1.4	11
33	Neutral, Anionic, and Paramagnetic 1,3,2-Diazaberyllacyles Derived from Reduced 1,4-Diazabutadienes. Organometallics, 2020, 39, 4208-4213.	2.3	11
34	Title is missing!. Australian Journal of Chemistry, 2001, 54, 705.	0.9	10
35	Structural investigation of m <i>M</i> Ni(II) complex isomers using transmission XAFS: the significance ofÂmodel development. Journal of Synchrotron Radiation, 2015, 22, 1475-1491.	2.4	10
36	A Heteroaromatically Functionalized Hexamolybdate. Inorganics, 2015, 3, 82-100.	2.7	7

STEPHEN P BEST

#	Article	IF	CITATIONS
37	Methods and methodology for FTIR spectral correction of channel spectra and uncertainty, applied to ferrocene. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 177, 86-92.	3.9	7
38	XAFS of short-lived reduction products of structural and functional models of the [Fe–Fe] hydrogenase H-cluster. Radiation Physics and Chemistry, 2006, 75, 1878-1883.	2.8	5
39	Macroradical enables electrical conduction in epoxy thermoset. Polymer, 2021, 230, 124046.	3.8	5
40	The nature and origin of pigments in black opal from Lightning Ridge, New South Wales, Australia. Australian Journal of Earth Sciences, 2019, 66, 1027-1039.	1.0	4
41	Application of the â€~Spiking' method to the measurement of low dose radiation (≤ Gy) using alanine dosimeters. Applied Radiation and Isotopes, 2018, 133, 111-116.	1.5	3
42	Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. Inorganics, 2019, 7, 37.	2.7	3
43	Investigation of biological activity of nickel (II) complex with naproxen and 1,10-phenanthroline ligands. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6939-6954.	3.5	3
44	Redox state and photoreduction control using X-ray spectroelectrochemical techniques – advances in design and fabrication through additive engineering. Journal of Synchrotron Radiation, 2021, 28, 472-479.	2.4	2
45	Dominance of eclipsed ferrocene conformer in solutions revealed by the IR spectra between 400 and 500 cm-1. Radiation Physics and Chemistry, 2021, 188, 109590.	2.8	2
46	Electron Delocalization in Spectroelectrochemically and Computationally Characterized [Pt{(<i>p</i> -BrC ₆ F ₄)NCHâ•€(Cl)NEt ₂ }Cl(py)] ⁺ Formed by Electrochemical Oxidation of [Pt ^{II} {(<i>p</i> -BrC ₆ F ₄)NCHâ•€(Cl)NEt ₂ }Cl(py)].	4.0	1
47	Inorganic Chemistry, 2021, 60, 18899-18911. Impact of the 2Fe2P core geometry on the reduction chemistry of phosphido-bridged diiron hexacarbonyl compoundsâ€. Australian Journal of Chemistry, 2022, , .	0.9	1