
Vesna Ilic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/689264/publications.pdf Version: 2024-02-01

VEGNA LUC

#	Article	IF	CITATIONS
1	Exploring electroactive microenvironments in polymer-based nanocomposites to sensitize bacterial cells to low-dose embedded silver nanoparticles. Acta Biomaterialia, 2022, 139, 237-248.	4.1	11
2	Influence of glucose, sucrose, and dextran coatings on the stability and toxicity of silver nanoparticles. International Journal of Biological Macromolecules, 2022, 194, 461-469.	3.6	10
3	Interfacial charge transfer complex between TiO2 and non-aromatic ligand squaric acid. Optical Materials, 2022, 123, 111918.	1.7	6
4	Interfacial charge transfer complex formation between silver nanoparticles and aromatic amino acids. Physical Chemistry Chemical Physics, 2022, 24, 16493-16500.	1.3	1
5	Surface-modified ZrO2 nanoparticles with caffeic acid: Characterization and in vitro evaluation of biosafety for placental cells. Chemico-Biological Interactions, 2021, 347, 109618.	1.7	7
6	Selective Antimicrobial Performance of Biosynthesized Silver Nanoparticles by Horsetail Extract Against E. coli. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 2598-2607.	1.9	12
7	Tuning Properties of Cerium Dioxide Nanoparticles by Surface Modification with Catecholate-type of Ligands. Langmuir, 2020, 36, 9738-9746.	1.6	11
8	Dextran-coated silver nanoparticles for improved barrier and controlled antimicrobial properties of nanocellulose films used in food packaging. Food Packaging and Shelf Life, 2020, 26, 100575.	3.3	44
9	Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. Materials Chemistry and Physics, 2019, 236, 121816.	2.0	4
10	Drug Delivery Systems for Diabetes Treatment. Current Pharmaceutical Design, 2019, 25, 166-173.	0.9	21
11	Interfacial Charge Transfer Transitions in Colloidal TiO ₂ Nanoparticles Functionalized with Salicylic acid and 5-Aminosalicylic acid: A Comparative Photoelectron Spectroscopy and DFT Study. Journal of Physical Chemistry C, 2019, 123, 29057-29066.	1.5	17
12	Antibacterial ability of immobilized silver nanoparticles in agar-agar films co-doped with magnesium ions. Carbohydrate Polymers, 2019, 224, 115187.	5.1	26
13	Visible-light-responsive surface-modified TiO2 powder with 4-chlorophenol: A combined experimental and DFT study. Optical Materials, 2019, 89, 237-242.	1.7	20
14	Organic–Inorganic Hybrid Nanomaterials: Synthesis, Characterization, and Application. , 2019, , 419-449.		5
15	Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 899-905.	0.9	8
16	Antimicrobial activity of silver nanoparticles supported by magnetite. ChemistrySelect, 2019, 4, 4018-4024.	0.7	10
17	Efficiency of the interfacial charge transfer complex between TiO2 nanoparticles and caffeic acid against DNA damage in vitro: A combinatorial analysis. Journal of the Serbian Chemical Society, 2019, 84, 539-553.	0.4	2
18	Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food and Chemical Toxicology, 2018, 115, 42-48.	1.8	28

VESNA ILIC

#	Article	IF	CITATIONS
19	Immobilization of dextransucrase on functionalized TiO2 supports. International Journal of Biological Macromolecules, 2018, 114, 1216-1223.	3.6	18
20	Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. Vacuum, 2018, 148, 62-68.	1.6	27
21	Production of bioethanol from pre-treated cotton fabrics and waste cotton materials. Carbohydrate Polymers, 2017, 164, 136-144.	5.1	48
22	Surface-modified TiO2 nanoparticles with ascorbic acid: Antioxidant properties and efficiency against DNA damage in vitro. Colloids and Surfaces B: Biointerfaces, 2017, 155, 323-331.	2.5	30
23	Dextran coated silver nanoparticles — Chemical sensor for selective cysteine detection. Colloids and Surfaces B: Biointerfaces, 2017, 160, 184-191.	2.5	64
24	Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid – Sorbent for efficient separation of Pb2+ and Cu2+ ions. Journal of Environmental Chemical Engineering, 2017, 5, 3759-3765.	3.3	14
25	Effective valorization of barley bran for simultaneous cellulase and β-amylase production by Paenibacillus chitinolyticus CKS1: Statistical optimization and enzymes application. Journal of the Serbian Chemical Society, 2017, 82, 1223-1236.	0.4	3
26	Antibacterial and UV protective properties of polyamide fabric impregnated with TiO2/Ag nanoparticles. Journal of the Serbian Chemical Society, 2015, 80, 705-715.	0.4	11
27	Negative influence of Ag and TiO2 nanoparticles on biodegradation of cotton fabrics. Cellulose, 2015, 22, 1365-1378.	2.4	18
28	Impregnation of cotton fabric with silver nanoparticles synthesized by dextran isolated from bacterial species Leuconostoc mesenteroides T3. Carbohydrate Polymers, 2015, 131, 331-336.	5.1	38
29	Copper nanoparticles with high antimicrobial activity. Materials Letters, 2014, 128, 75-78.	1.3	154
30	In situ photoreduction of Ag+-ions by TiO2 nanoparticles deposited on cotton and cotton/PET fabrics. Cellulose, 2014, 21, 3781-3795.	2.4	31
31	The influence of triangular silver nanoplates on antimicrobial activity and color of cotton fabrics pretreated with chitosan. Journal of Materials Science, 2014, 49, 4453-4460.	1.7	26
32	The study of antibacterial activity and stability of dyed cotton fabrics modified with different forms of silver. Journal of the Serbian Chemical Society, 2012, 77, 225-234.	0.4	20
33	Bactericidal Efficiency of Silver Nanoparticles Deposited onto Radio Frequency Plasma Pretreated Polyester Fabrics. Industrial & Engineering Chemistry Research, 2010, 49, 7287-7293.	1.8	70
34	A study of the antibacterial efficiency and coloration of dyed polyamide and polyester fabrics modified with colloidal Ag nanoparticles. Journal of the Serbian Chemical Society, 2009, 74, 349-357.	0.4	8
35	Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles. Journal of Materials Science, 2009, 44, 3983-3990.	1.7	85
36	The study of coloration and antibacterial efficiency of corona activated dyed polyamide and polyester fabrics loaded with Ag nanoparticles. Fibers and Polymers, 2009, 10, 650-656.	1.1	19

VESNA ILIC

#	Article	IF	Citations
Ŧ	ARTICLE		CHAHONS
37	The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate Polymers, 2009, 78, 564-569.	5.1	146
38	Recycled woolâ€based nonwoven material for decolorisation of dyehouse effluents. International Journal of Clothing Science and Technology, 2009, 21, 109-116.	0.5	9
39	Characterization and quantitative analysis of surfactants in textile wastewater by liquid chromatography/quadrupoleâ€timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2008, 22, 1445-1454.	0.7	41
40	Antibacterial effect of silver nanoparticles deposited on coronaâ€ŧreated polyester and polyamide fabrics. Polymers for Advanced Technologies, 2008, 19, 1816-1821.	1.6	151
41	Efficiency of recycled wool-based nonwoven material for the removal of oils from water. Chemosphere, 2008, 70, 525-530.	4.2	158
42	Removal of metal cations from wastewater using recycled wool-based non-woven material. Journal of the Serbian Chemical Society, 2007, 72, 605-614.	0.4	9
43	The Study of Control Parameters for Some Divalent Metal Cations Sorption by Recycled Wool-based Nonwoven Material. Trends in Applied Sciences Research, 2006, 1, 564-574.	0.4	6