Claudinei dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of ZrO2–Al2O3 composite as a function of isothermal holding time. International Journal of Refractory Metals and Hard Materials, 2007, 25, 374-379.	1.7	54
2	Effect of porosity on hardness of Al2O3–Y3Al5O12 ceramic composite. International Journal of Refractory Metals and Hard Materials, 2015, 48, 365-368.	1.7	51
3	Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles. Ceramics International, 2009, 35, 709-718.	2.3	39
4	Properties of Y-TZP/Al2O3 ceramic nanocomposites obtained by high-energy ball milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 502, 6-12.	2.6	34
5	Roughness and its effects on flexural strength of dental yttria-stabilized zirconia ceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 739, 149-157.	2.6	33
6	Effect of partial crystallization on the mechanical properties and cytotoxicity of bioactive glass from the 3CaO.P2O5–SiO2–MgO system. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 14, 78-88.	1.5	31
7	α-SiAlON ceramics with elongated grain morphology using an alternative sintering additive. Materials Letters, 2004, 58, 1792-1796.	1.3	30
8	Stabilization of α-SiAlONs using a rare-earth mixed oxide (RE2O3) as sintering additive. Materials Research Bulletin, 2005, 40, 1094-1103.	2.7	28
9	Mechanical properties of Y-TPZ ceramics obtained by liquid phase sintering using bioglass as additive. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 257-263.	2.6	28
10	Mechanical properties of hot-pressed ZrO2–NbC ceramic composites. International Journal of Refractory Metals and Hard Materials, 2008, 26, 14-18.	1.7	25
11	Influence of additive content on the anisotropy in hot-pressed Si3N4 ceramics using grain orientation measurements. Ceramics International, 2004, 30, 653-659.	2.3	23
12	Mechanical properties of lithium metasilicate after short-term thermal treatments. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 179-186.	1.5	23
13	Bioactivity and cytotoxicity of glass and glass–ceramics based on the 3CaO·P2O5–SiO2–MgO system. Journal of Materials Science: Materials in Medicine, 2013, 24, 2171-2180.	1.7	22
14	Development of α-SiAlON-SiC ceramic composites by liquid phase sintering. International Journal of Refractory Metals and Hard Materials, 2007, 25, 77-81.	1.7	21
15	Development and cytotoxicity evaluation of SiAlONs ceramics. Materials Science and Engineering C, 2007, 27, 148-153.	3.8	21
16	Mechanical properties evaluation of hot-pressed Si3N4–SiC(w) composites. International Journal of Refractory Metals and Hard Materials, 2003, 21, 233-239.	1.7	20
17	Mechanical properties improvement related to the isothermal holding time in Si3N4 ceramics sintered with an alternative additive. International Journal of Refractory Metals and Hard Materials, 2003, 21, 245-250.	1.7	19
18	Substitution of pure Y2O3 by a mixed concentrate of rare earth oxides (CRE2O3) as sintering additive of Si3N4: a comparative study of the mechanical properties. Journal of Materials Processing Technology, 2003, 142, 697-701.	3.1	19

#	Article	IF	CITATIONS
19	α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing. Journal of Materials Processing Technology, 2007, 189, 138-142.	3.1	18
20	Evaluation of the micro-hardness and fracture toughness of amorphous and partially crystallized 3CaO·P2O5–SiO2–MgO bioglasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 533, 26-32.	2.6	18
21	Performance of 3Y-TZP bioceramics under cyclic fatigue loading. Materials Research, 2008, 11, 89-92.	0.6	17
22	Ceramics composites Si3N4–SiC(w) containing rare earth concentrate (CRE) as sintering aids. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 367, 312-316.	2.6	16
23	Fatigue and subcritical crack growth in ZrO2–bioglass ceramics. Ceramics International, 2013, 39, 2405-2414.	2.3	16
24	Influence of heatâ€ŧreatment protocols on mechanical behavior of lithium silicate dental ceramics. International Journal of Applied Ceramic Technology, 2019, 16, 1920-1931.	1.1	16
25	Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104372.	1.5	16
26	Development and characterization by HRTEM of hot-pressed Si3N4–SiC(w) composites. Journal of Materials Processing Technology, 2005, 169, 445-451.	3.1	15
27	Toughened ZrO2 ceramics sintered with a La2O3-rich glass as additive. Journal of Materials Processing Technology, 2008, 200, 126-132.	3.1	15
28	Fatigue behavior of 3%Y2O3-doped ZrO2 ceramics. Journal of Materials Research and Technology, 2014, 3, 48-54.	2.6	15
29	Mechanical properties and translucency of a multi-layered zirconia with color gradient for dental applications. Ceramics International, 2021, 47, 301-309.	2.3	15
30	Evaluation of the reliability of Si3N4-Al2O3 -CTR2O3 ceramics through Weibull analysis. Materials Research, 2003, 6, 463-467.	0.6	14
31	Effects of extreme cooling methods on mechanical properties and shear bond strength of bilayered porcelain/3Y-TZP specimens. Journal of Dentistry, 2013, 41, 356-362.	1.7	14
32	Modeling of the Influence of Chemical Composition, Sintering Temperature, Density, and Thickness in the Light Transmittance of Four Zirconia Dental Prostheses. Materials, 2019, 12, 2529.	1.3	14
33	Effect of the temperature on the mechanical properties and translucency of lithium silicate dental glass-ceramic. Ceramics International, 2021, 47, 9933-9940.	2.3	13
34	Effect of hydrothermal aging on the properties of zirconia with different levels of translucency. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103847.	1.5	13
35	Strength improvement of LPS–SiC ceramics by oxidation treatment. International Journal of Refractory Metals and Hard Materials, 2010, 28, 484-488.	1.7	12
36	Highly dense Si3N4 crucibles used for Al casting: An investigation of the aluminum–ceramic interface at high temperatures. Journal of Materials Processing Technology, 2007, 184, 108-114.	3.1	10

CLAUDINEI DOS SANTOS

#	Article	IF	CITATIONS
37	Effect of Air-Abrasion Regimens and Fine Diamond Bur Grinding on Flexural Strength, Weibull Modulus and Phase Transformation of Zirconium Dioxide. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 266-273.	0.7	10
38	Al2O3/Y-TZP ceramic composite with unidirectional functional gradient. International Journal of Refractory Metals and Hard Materials, 2018, 75, 147-152.	1.7	10
39	Effect of surface finishing and thickness on the translucency of zirconia dental ceramics. Ceramics International, 2020, 46, 7748-7755.	2.3	10
40	Shear-thinning sacrificial ink for fabrication of Biosilicate® osteoconductive scaffolds by material extrusion 3D printing. Materials Chemistry and Physics, 2022, 287, 126286.	2.0	10
41	Crystallographic characterization of silicon nitride ceramics sintered with Y2O3–Al2O3 or E2O3–Al2O3 additions. Ceramics International, 2009, 35, 289-293.	2.3	9
42	Obtaining and stability verification of superconducting phases of the Nb–Al and Nb–Sn systems by mechanical alloying and low-temperature heat treatments. Journal of Alloys and Compounds, 2010, 491, 187-191.	2.8	9
43	Mechanical properties of biocompatible Y-TZP/Al2O3 composites obtained from mechanically alloyed powders. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	9
44	A contribution of X ray diffraction analysis in the determination of creep of Si3N4 ceramics. Materials Research, 2006, 9, 1-8.	0.6	8
45	Densification and grain growth of nano- and micro-sized Y-TZP powders. Ceramics International, 2016, 42, 2662-2669.	2.3	8
46	Sintering behaviour of Co-28%Cr-6%Mo compacted blocks for dental prosthesis. Journal of Materials Research and Technology, 2019, 8, 2052-2062.	2.6	8
47	State of the art in the use of bioceramics to elaborate 3D structures using robocasting. International Journal of Advances in Medical Biotechnology - IJAMB, 2019, 2, 55.	0.1	8
48	Properties of hot-pressed, partially stabilized CRE-α-SiAlONs as a function of the additive content. International Journal of Refractory Metals and Hard Materials, 2004, 22, 79-85.	1.7	7
49	Degradation of Y ₂ O ₃ -Stabilized ZrO ₂ Ceramics in Artificial Saliva: ICP Analysis of Dissolved Y ³⁺ and Zr ⁴⁺ Ions. Materials Science Forum, 2012, 727-728, 1136-1141.	0.3	7
50	Oxidation behavior of LPS-SiC ceramics sintered with AlN/Y2O3 as additive. International Journal of Refractory Metals and Hard Materials, 2014, 42, 246-254.	1.7	7
51	Influence of the microstructure on the life prediction of hydrothermal degraded 3Y-TZP bioceramics. Journal of Materials Research and Technology, 2020, 9, 10830-10840.	2.6	7
52	Optimizing the microstructure of a new machinable bioactive glass-ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104695.	1.5	7
53	Flexural strength of 3Y-TZP bioceramics obtained by direct write assembly as function of residual connected-porosity. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 126, 105035.	1.5	7
54	Characterization of ceramic powders used in the inCeram systems to fixed dental Prosthesis. Materials Research, 2007, 10, 47-51.	0.6	6

#	Article	IF	CITATIONS
55	Creep of heat treated silicon nitride with neodymium and yttrium oxides additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6893-6898.	2.6	6
56	Microstructure and corrosion behavior in SBF medium of spark plasma sintered Ti-xZr-20Si-10B (xÂ= 5, 7,) Tj ETC	2q0.0,0 rgl	BT Overlock

57	Experimental analysis and finite element modeling of the piston-on-three balls testing of Y-TZP ceramica, 2020, 66, 30-42.	0.3	6
58	CoCrMo-base Alloys for Dental Applications Obtained by Selective laser melting (SLM) and CAD/CAM Milling. Materials Research, 2020, 23, .	0.6	6
59	Development of translucent zirconia by robocasting. Materials Letters, 2022, 325, 132785.	1.3	6
60	Compressive creep behavior of hot-pressed Si3N4–CRE2O3–Al2O3 ceramics. Materials Research Bulletin, 2004, 39, 1279-1289.	2.7	5
61	Compressive creep behavior of hot-pressed Si3N4 ceramics using alumina and a rare earth solid solution as additives. International Journal of Refractory Metals and Hard Materials, 2005, 23, 183-192.	1.7	5
62	Effect of Al ₂ O ₃ Addition on the Mechanical Properties of Biocompatible ZrO ₂ -Al ₂ O ₃ Composites. Materials Science Forum, 2006, 530-531, 575-580.	0.3	5
63	Synthesis of a mixed-rare-earth aluminum garnet solid solution. Materials Letters, 2013, 91, 283-286.	1.3	5
64	Microstructural evidence of beryllium in commercial dental Ni-Cr alloys. Materials Research, 2014, 17, 627-631.	0.6	5
65	Recovery of Tetragonal Phase from Previously Transformed Y-TZP. Materials Research, 2016, 19, 829-833.	0.6	5
66	Influence of CAD-CAM milling on the flexural strength of Y-TZP dental ceramics. Ceramics International, 2019, 45, 10250-10259.	2.3	5
67	Development of dense Al2O3–TiO2 ceramic composites by the glass-infiltration of porous substrates prepared from mechanical alloyed powders. Ceramics International, 2020, 46, 2344-2354.	2.3	5
68	Effect of preheating and isothermal holding time on the crystallization, densification and properties of a sintered lithium silicate glass-ceramic. Ceramics International, 2022, 48, 5590-5600.	2.3	5
69			
	Characterization of rare earth oxide-rich glass applied to the glass-infiltration of a ceramic system. Ceramics International, 2014, 40, 1619-1625.	2.3	4
70	Characterization of rare earth oxide-rich glass applied to the glass-infiltration of a ceramic system. Ceramics International, 2014, 40, 1619-1625. Sinterização e propriedades mecânicas do compósito Y-TZP/Al2O3. Ceramica, 2007, 53, 227-233.	2.3 0.3	4
70 71	Ceramics International, 2014, 40, 1619-1625.		

#	Article	IF	CITATIONS
73	Fatigue of Zirconia - Bioglass Dental Ceramics. Materials Science Forum, 0, 591-593, 628-633.	0.3	3
74	High Temperature Properties of Silicon Nitride with Neodymium Oxide Additions. Materials Science Forum, 2008, 591-593, 560-564.	0.3	3
75	Efficiency Evaluation of ZrB ₂ Incorporation in the MgB ₂ Matrix Phase Using High-Energy Milling. Materials Science Forum, 0, 660-661, 82-87.	0.3	3
76	Influence of the Sintering Conditions on the Mechanical Properties of Nanosized TZP Ceramics. Materials Science Forum, 0, 660-661, 826-831.	0.3	3
77	Effect of pH and Fluoride on Behavior of Dental ZrO ₂ Ceramics in Artificial Saliva. Materials Science Forum, 2010, 660-661, 879-884.	0.3	3
78	Development and characterization of 3CaO·P2O5-SiO2-MgO glass-ceramics with different crystallization degree. Journal of Advanced Ceramics, 2013, 2, 378-388.	8.9	3
79	Effect of Particle Size of ZrO ₂ (Y ₂ O ₃) Powders on the Shrinkage of the Sintered Substrate with Coloring Gradient. Advances in Science and Technology, 0, , .	0.2	3
80	Reuse of ZrO ₂ (Y ₂ O ₃) Arising from Making Dental Implant - Characterization of Materials. Materials Science Forum, 0, 798-799, 632-637.	0.3	3
81	Degradation and Mechanical Properties of Zirconia 3â€Unit Fixed Dental Prostheses Machined on a CAD/CAM System. International Journal of Applied Ceramic Technology, 2014, 11, 513-523.	1.1	3
82	Mechanical Properties Evaluation of Al ₂ O ₃ -YAG Ceramic Composites. Materials Science Forum, 2015, 820, 239-243.	0.3	3
83	Biocide glass based on Nb2O5-SiO-CaO-Na2O system. Materials Letters, 2016, 183, 277-280.	1.3	3
84	HPHT sintering of binderless Si3N4: structure, microstructure, mechanical properties and machining behavior. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	3
85	Preparation of TiC/Ti3SiC2 Composite by Sintering Mechanical Alloyed Ti–Si–C Powder Mixtures. Journal of Nanoscience and Nanotechnology, 2020, 20, 4580-4586.	0.9	3
86	Development and characterization of alumina-toughened zirconia (ATZ) ceramic composites doped with a beneficiated rare-earth oxide extracted from natural ore. Journal of Materials Research and Technology, 2022, 16, 451-460.	2.6	3
87	Reactive Sintering of Al2O3–Y3Al5O12 Ceramic Composites Obtained by Direct Ink Writing. Ceramics, 2022, 5, 1-12.	1.0	3
88	Physical Properties and Color Stainability by Coffee and Red Wine of Opaque and High Translucency Zirconia Dental Ceramics after Hydrothermal Degradation. International Journal of Biomaterials, 2022, 2022, 1-11.	1.1	3
89	Effect of heat treatment on the roughness and mechanical properties of dental lithium disilicate glass-ceramics. Ceramics International, 2022, 48, 26303-26311.	2.3	3
90	Oxidation Behavior of Hot-Pressed Si ₃ N ₄ Ceramics Using CRE ₂ O ₃ -AlN and CRE ₂ O ₃ -Al ₂ O ₃ as Sintering Additives. Materials Science Forum, 2005, 498-499, 569-574.	0.3	2

#	Article	IF	CITATIONS
91	Effect of Isothermal Sintering Time on the Properties of the Ceramic Composite ZrO ₂ -Al ₂ O ₃ . Materials Science Forum, 2006, 530-531, 526-531.	0.3	2
92	Mechanical Behaviour of ZrO ₂ -Bioglass Dental Ceramics under Cyclic Fatigue Loading. Materials Science Forum, 0, 636-637, 47-53.	0.3	2
93	Improvement of the Mechanical Properties of Glasses Based on the 3CaO.P ₂ O ₅ -SiO ₂ -MgO System after Heat-Treatment. Materials Science Forum, 0, 636-637, 41-46.	0.3	2
94	Lithium Disilicate Glass-Ceramic Obtained from Rice Husk-Based Silica. Advances in Science and Technology, 2010, 63, 414-419.	0.2	2
95	Sintering of Al ₂ 0 ₃ -TiO ₂ Mixtures Obtained by High-Energy Ball Milling. Advances in Science and Technology, 0, , .	0.2	2
96	Compaction of ZrO ₂ (Y ₂ O ₃) Powders with Different Particle Sizes and Effects on the Sintering. Materials Science Forum, 0, 798-799, 719-724.	0.3	2
97	Microstructural Characterization of 66%Co-28%Cr-6%Mo Dental Alloy Powder Obtained by High-Energy Ball Milling. Materials Science Forum, 0, 802, 51-55.	0.3	2
98	Sintering of alumina ceramics reinforced with a bioactive glass of 3CaO.P ₂ O ₅ -SiO ₂ -MgO system. Ceramica, 2015, 61, 160-167.	0.3	2
99	Mechanical Properties of Natural Fibers Reinforced Polymer Composites: Palm/Low Density Polyethylene. Materials Science Forum, 2016, 869, 326-330.	0.3	2
100	Effect of the Cooling Rate on the Properties of Veneer Porcelain for Zirconia Dental Prosthesis. Materials Research, 2017, 20, 1418-1424.	0.6	2
101	Characterization of Al ₂ O ₃ -Al ₂ TiO ₂ Ceramic Composites: Effects of Sintering Parameters on the Properties. Materials Science Forum, 2018, 912, 118-123.	0.3	2
102	Bending strength and reliability of porcelains used in all-ceramic dental restorations. Ceramica, 2018, 64, 491-497.	0.3	2
103	Mechanical Alloying and Hot Pressing of Ti-Zr-Si-B Powder Mixtures. Metals, 2018, 8, 82.	1.0	2
104	Microstructure and Vickers hardness of mechanically alloyed and spark plasma sintered Ti-2Zn-22Si-11B and Ti-6Zn-22Si-11B alloys. Journal of Alloys and Compounds, 2019, 794, 615-624.	2.8	2
105	Shear Bond Strength of Lithium Disilicate to Resin Cement After Treatment with Hydrofluoric Acid and a Self-etching Ceramic Primer. Materials Research, 2021, 24, .	0.6	2
106	Effects of Zn content on surface deformability and corrosion resistance of MgZnMnCa alloys. International Journal of Materials Research, 2020, 111, 511-518.	0.1	2
107	Comparison between different fracture toughness techniques in zirconia dental ceramics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2023, 111, 103-116.	1.6	2
108	Anisotropia no comportamento à fluência de cerâmicas à base de Si3N4 prensadas à quente. Ceramica, 2005, 51, 96-101.	0.3	1

CLAUDINEI DOS SANTOS

#	Article	IF	CITATIONS
109	Estudo do nitreto de alumÃnio para aplicações termo-mecânicas. Ceramica, 2005, 51, 349-353.	0.3	1
110	Silicon nitride compressive creep behavior in argon atmosphere. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 422-427.	2.6	1
111	Evaluation of Silicon Nitride Ceramic Cutting Tools with Diamond Coatings. Materials Science Forum, 0, 591-593, 537-542.	0.3	1
112	High and Room Temperature Mechanical Evaluation of SiC Ceramics with Alumina and Rare Earth Oxides Additions. Materials Science Forum, 2008, 591-593, 593-597.	0.3	1
113	Properties of Nanostructured 3Y-TZP Blocks Used for CAD/CAM Dental Restoration. Key Engineering Materials, 2008, 396-398, 603-606.	0.4	1
114	Evaluation of the Influence of the Silane Drying Temperature on the Feldspar and Zirconia-Based Ceramics Surfaces. Materials Science Forum, 2012, 727-728, 826-830.	0.3	1
115	Effect of Ball-Powder Ratio in the High-Energy Milling of 66%Co-28%Cr-6%Mo Dental Alloy. Materials Science Forum, 2014, 802, 56-60.	0.3	1
116	Development and Characterization of Al ₂ O ₃ -ZrO ₂ Composites Using ZrO ₂ (Y ₂ O ₃)-Recycled as Raw Material. Materials Science Forum, 0, 912, 124-129.	0.3	1
117	Ceramics and Glass-Ceramics Dental Materials: Chemical Solubility, Cytotoxicity and Mechanical Properties. Materials Science Forum, 0, 912, 170-174.	0.3	1
118	Influence of the Interpass Welding Temperature on Microstructure and Corrosion Resistance of Superduplex Stainless Steel SAF 2507. Materials Research, 2021, 24, .	0.6	1
119	Effect of a whitlockite glass-ceramic on the occlusion of dentinal tubules for dentin hypersensitivity treatment. Research, Society and Development, 2021, 10, e19610313161.	0.0	1
120	Caracterização estrutural por difração de raios X de alta resolução de SiAlONs sinterizados com diferentes aditivos. Ceramica, 2005, 51, 313-317.	0.3	1
121	BIOCERÃ,MICAS À BASE DE ZrO2-TETRAGONAL OBTIDAS POR SINTERIZAÇÃO VIA FASE LÃQUIDA. Tecnologia Em Metalurgia E Materiais, 2008, 4, 23-29.	0.1	1
122	Co-Cr-Mo-W powder obtained by mechanical alloying. Revista Materia, 2020, 25, .	0.1	1
123	Effect of the surface finish on the mechanical properties and cellular adhesion in (Ce,Y)-TZP/Al2O3 ceramic composites for denture implants. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 134, 105363.	1.5	1
124	Compressive Creep of Hot-Pressed Si ₃ N ₄ Ceramics Using CRE ₂ O ₃ -Al ₂ O ₃ or CRE ₂ O ₃ -AlN Additive Mixtures. Materials Science Forum, 2005, 498-499, 104-110.	0.3	0
125	Creep Behavior of Multi-Cation α-SiAlON Partially Stabilized Produced with an Yttrium-Rare Earth Oxide Mixture(CRE ₂ O ₃). Materials Science Forum, 2005, 498-499, 575-580.	0.3	0
126	Characterization of ZrO ₂ and Al ₂ O ₃ Bioceramics Obtained by Gelcasting. Materials Science Forum, 0, 591-593, 482-486.	0.3	0

CLAUDINEI DOS SANTOS

#	Article	IF	CITATIONS
127	Oxidation of Silicon Carbide Ceramics Obtained by Liquid Phase Sintering. Materials Science Forum, 2008, 591-593, 616-619.	0.3	0
128	Silicon Carbide Whiskers Interference on Silicon Nitride Based Composite. Materials Science Forum, 0, 591-593, 543-547.	0.3	0
129	Microstructural Evaluation of the Zirconia Plasma Sprayed Coating on Ti-6Al-4V Alloy after Creep Test. Materials Science Forum, 2008, 591-593, 839-844.	0.3	0
130	Estudo da oxidação de cerâmicas à base de carbeto de silÃcio sinterizado via fase lÃquida utilizando nitreto de alumÃnio e óxido de Ãŧrio como aditivos. Ceramica, 2008, 54, 198-202.	0.3	0
131	102213 Use of High Energy Ball Milling on the Sintering Optimization of Alumina Ceramics. Materials Science Forum, 0, 660-661, 701-706.	0.3	Ο
132	Effect of Glassy Phase Additions to Zirconia on its Sintering Behavior and Microstructure. Materials Science Forum, 2012, 727-728, 935-939.	0.3	0
133	Lithium Disilicate Bioceramic Obtained from Alternative Silica Source, the Rice Husk. Materials Science Forum, 0, 727-728, 1158-1163.	0.3	Ο
134	Effect of Surface Treatment of Yttria Stabilized Zirconia for Dental Prostheses. Materials Science Forum, 2012, 727-728, 831-836.	0.3	0
135	Evaluation of Mechanical Properties of Dental Feldsphatic Porcelains for Metal and Zirconia Core. Materials Science Forum, 2012, 727-728, 1104-1107.	0.3	Ο
136	Influence of CAD/CAM Grinding in the Performance of Sintered Dental Zirconia Framework. Materials Science Forum, 2012, 727-728, 1081-1084.	0.3	0
137	Residual Thermal Stress of Spinell Based-Ceramic Infiltrated with Glass Rich in Lanthanum. Advances in Science and Technology, 2014, 96, 67-72.	0.2	Ο
138	Characterization of Commercial Co-Cr-Alloy Powder Used in Selective Laser Sintering. Materials Science Forum, 0, 802, 329-333.	0.3	0
139	Selective Laser Sintering of Different Powders of Co-Cr-Mo. Materials Science Forum, 2014, 802, 338-342.	0.3	Ο
140	Propriedades de ZrO2 (Y2 O3) reciclado proveniente da confecção de próteses dentárias. Revista Materia, 2015, 20, 975-981.	0.1	0
141	Development of α-Al ₂ O ₃ Ceramics for Bottom of Sintering Impeller Furnace. Materials Science Forum, 0, 881, 91-96.	0.3	Ο
142	MgAl ₂ O ₄ -ZrO ₂ (Y ₂ O ₃) Ceramic Composite: Sintering and Characterization. Materials Science Forum, 2016, 881, 323-328.	0.3	0
143	Properties of ZrO ₂ (Y ₂ O ₃) Used as Metal-Free Dental Restorations. Materials Science Forum, 0, 881, 181-186.	0.3	0
144	Infiltrated Spinel-Based Ceramic (MgAl ₂ O ₄) for Dental Application. Materials Science Forum, 2016, 881, 176-180.	0.3	0

#	Article	IF	CITATIONS
145	Use of Composite SiO ₂ (62-68)-MgO + CaO (29-39) in Ceramic Protection Mass Injection Machines in the Iron Notch and Liquid Slag Hole in Blast Furnaces. Materials Science Forum, 2016, 881, 295-299.	0.3	0
146	Preparation and Characterization of Composites Obtained of Polymeric Waste Coming from Boards Electronic Equipment. Materials Science Forum, 0, 869, 338-341.	0.3	0
147	Properties of Pre-Sintered ZrO ₂ (Y ₂ O ₃) Blocks Consolidated by Cold Isostatic Pressing. Materials Science Forum, 0, 912, 159-164.	0.3	0
148	ZrO ₂ Pre-Sintered Blocks (3%mol-Y ₂ O ₃) with Color Gradient for Dental Prostheses. Materials Science Forum, 0, 930, 57-62.	0.3	0
149	Y-PSZ/Bioglass 45S5 composite obtained by the infiltration technique of porous pre-sintered bodies using sacrificial molding. Research, Society and Development, 2021, 10, e57510716920.	0.0	0
150	Strength of 3Y-TZP and feldspathic porcelain subjected to different cooling methods. Brazilian Journal of Oral Sciences, 2014, 13, 124-128.	0.1	0
151	Effect of Cobalt Doping and Milling Time on Microstructure and Vickers Microhardness of the Spark Plasma Sintered (67-x)Ti-xCo-22Si-11B (x = 2 and 6 at-%) Alloys. Materials Research, 2020, 23, .	0.6	0
152	Synthesis and characterization of non-stoichiometric hydroxyapatite nanoparticles using unmodified and modified starches. Research, Society and Development, 2020, 9, e30791210996.	0.0	0
153	Microstructural Evolution and Electrochemical Behavior of Solution Treated, Hot Rolled and Aged MgDyZnZr Alloy. Metals, 2021, 11, 1855.	1.0	0
154	Effect of Addition of Previously-Synthesized Ce-TZP/Al2O3 Submicrometric Powder on the Properties of Al2O3-Based Ceramics. Materials Research, 0, 25, .	0.6	0
155	Four-Point Bending Fatigue Behavior of Al2O3-ZrO2 Ceramic Biocomposites Using CeO2 as Dopant. Materials Research, 0, 25, .	0.6	0
156	Microstructure and diametral fracture strength of spark plasma sintered WC-6Co-0.2B and WC-6Co-0.5B ceramic composites from nanosized and metastable WC powders. Ceramica, 2022, 68, 188-198.	0.3	0