Ilya Baymler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892191/publications.pdf

Version: 2024-02-01

840585 940416 19 315 11 16 citations h-index g-index papers 19 19 19 174 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Mechanical Shaking on the Physicochemical Properties of Aqueous Solutions. International Journal of Molecular Sciences, 2020, 21, 8033.	1.8	57
2	The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. Journal of Physical Chemistry B, 2019, 123, 1869-1880.	1.2	51
3	Influence of a Constant Magnetic Field on Some Properties of Water Solutions. Doklady Physics, 2020, 65, 273-275.	0.2	30
4	Study of the physicochemical and biological properties of the new promising Ti–20Nb–13Ta–5Zr alloy for biomedical applications. Materials Chemistry and Physics, 2020, 255, 123557.	2.0	23
5	Biodegradable stent coatings on the basis of PLGA polymers of different molecular mass, sustaining a steady release of the thrombolityc enzyme streptokinase. Reactive and Functional Polymers, 2020, 150, 104550.	2.0	23
6	Generation of Hydroxyl Radicals during Laser Breakdown of Aqueous Solutions in the Presence of Fe and Cu Nanoparticles of Different Sizes. Physics of Wave Phenomena, 2020, 28, 107-110.	0.3	21
7	Water Decomposition Occurring During Laser Breakdown of Aqueous Solutions Containing Individual Gold, Zirconium, Molybdenum, Iron or Nickel Nanoparticles. Frontiers in Physics, 2020, 8, .	1.0	19
8	Investigation of the laser-induced breakdown plasma, acoustic vibrations and dissociation processes of water molecules caused by laser breakdown of colloidal solutions containing Ni nanoparticles. Plasma Sources Science and Technology, 2021, 30, 125015.	1.3	16
9	Generation of hydrogen under laser irradiation of organic liquids. Quantum Electronics, 2018, 48, 738-742.	0.3	15
10	Influence of the Concentration of Fe and Cu Nanoparticles on the Dynamics of the Size Distribution of Nanoparticles. Frontiers in Physics, 2020, 8, .	1.0	14
11	Concentration Dependences of Molecular Oxygen and Hydrogen in Aqueous Solutions. Doklady Physics, 2020, 65, 5-7.	0.2	13
12	Analysis of Acoustic Signals During the Optical Breakdown of Aqueous Solutions of Fe Nanoparticles. Frontiers in Physics, 2020, 8, .	1.0	11
13	Influence of Gases Dissolved in Water on the Process of Optical Breakdown of Aqueous Solutions of Cu Nanoparticles. Frontiers in Physics, 2020, 8, .	1.0	11
14	Features of optical breakdown of aqueous colloidal solutions of ferric oxide (Fe2O3) nanoparticles occurring on individual or on two closely located nanoparticles. Chemical Physics Letters, 2021, 776, 138697.	1.2	6
15	Case Report: Investigation of the Time Evolution of Optical Breakdown Plasma During Irradiation of Aqueous Solutions of Fe Nanoparticles. Frontiers in Physics, 2021, 9, .	1.0	4
16	Obtaining of nanoparticles of Sc, Ti, V, Cr, Mn, Fe, Co, Ni with controlled sizes and properties using laser ablation. IOP Conference Series: Earth and Environmental Science, 2019, 390, 012036.	0.2	1
17	Creation and application of fluoropolymer photoconversion films for greenhouses: Concept IOP Conference Series: Materials Science and Engineering, 2019, 525, 012087.	0.3	O
18	Laser ablation method for the generation of chromium, iron, manganese, nickel, scandium, titanium and vanadium, nanoparticles: control of size and properties. IOP Conference Series: Materials Science and Engineering, 2020, 921, 012024.	0.3	0

#	Article	lF	CITATIONS
19	A quick method for size estimating of "green areas―in aerial photography. Journal of Physics: Conference Series, 2020, 1560, 012072.	0.3	0