Katharina Scheiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6892044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	It takes two to tango: How scientific reasoning and self-regulation processes impact argumentation quality. Journal of the Learning Sciences, 2022, 31, 237-277.	2.9	10
2	I see something you do not: Eye movement modelling examples do not improve anomaly detection in interpreting medical images. Journal of Computer Assisted Learning, 2022, 38, 379-391.	5.1	3
3	Quality beats frequency? Investigating students' effort in learning when introducing technology in classrooms. Contemporary Educational Psychology, 2022, 69, 102042.	2.9	15
4	Do Video Modeling and Metacognitive Prompts Improve Self-Regulated Scientific Inquiry?. Educational Psychology Review, 2022, 34, 1025-1061.	8.4	5
5	Selfâ€concept but not prior knowledge moderates effects of different implementations of computerâ€assisted inquiry learning activities on students' learning. Journal of Computer Assisted Learning, 2022, 38, 1141-1159.	5.1	6
6	Can involvement induced by guidance foster scientific reasoning and knowledge of participants of a citizen science project?. International Journal of Science Education, Part B: Communication and Public Engagement, 2022, 12, 94-110.	1.5	10
7	How to support dental students in reading radiographs: effects of a gaze-based compare-and-contrast intervention. Advances in Health Sciences Education, 2021, 26, 159-181.	3.3	11
8	New technology, new role of parents: How parents' beliefs and behavior affect students' digital media self-efficacy. Computers in Human Behavior, 2021, 116, 106642.	8.5	40
9	Development of Attention and Accuracy in Learning a Categorization Task. Frontiers in Psychology, 2021, 12, 544135.	2.1	0
10	Comparing radiographs with signaling improves anomaly detection of dental students: An eyeâ€ŧracking study. Applied Cognitive Psychology, 2021, 35, 909-923.	1.6	2
11	The intention was good: How promoting strategy use does not improve multimedia learning for secondary students. British Journal of Educational Psychology, 2021, 91, 1291-1309.	2.9	3
12	Does increasing social presence enhance the effectiveness of writing explanations?. PLoS ONE, 2021, 16, e0250406.	2.5	14
13	Variability of teachers' technology integration in the classroom: A matter of utility!. Computers and Education, 2021, 166, 104159.	8.3	76
14	For whom do tablets make a difference? Examining student profiles and perceptions of instruction with tablets. Computers and Education, 2021, 166, 104147.	8.3	13
15	Do prior knowledge, model-observer similarity and social comparison influence the effectiveness of eye movement modeling examples for supporting multimedia learning?. Instructional Science, 2021, 49, 607-635.	2.0	6
16	Teachers' technology use for teaching: Comparing two explanatory mechanisms. Teaching and Teacher Education, 2021, 104, 103390.	3.2	17
17	Editorial: Bildung für eine digitale Zukunft. Zeitschrift Fur Erziehungswissenschaft, 2021, 24, 1-5.	2.9	1
18	How the poor get richer: Signaling guides attention and fosters learning from textâ€graph combinations for students with low, but not high prior knowledge. Applied Cognitive Psychology,	1.6	5

2021, 35, 632-645.

#	Article	IF	CITATIONS
19	The Learner Control Principle in Multimedia Learning. , 2021, , 418-429.		2
20	Implementation Intentions for Improving Self-Regulation in Multimedia Learning: Why Don't They Work?. Journal of Experimental Education, 2020, 88, 536-558.	2.6	10
21	Professional knowledge or motivation? Investigating the role of teachers' expertise on the quality of technology-enhanced lesson plans. Learning and Instruction, 2020, 66, 101300.	3.2	80
22	Inferring task performance and confidence from displays of eye movements. Applied Cognitive Psychology, 2020, 34, 1430-1443.	1.6	7
23	ls drawing after learning effective for metacognitive monitoring only when supported by spatial scaffolds?. Instructional Science, 2020, 48, 569-589.	2.0	8
24	Looking at Mental Effort Appraisals through a Metacognitive Lens: Are they Biased?. Educational Psychology Review, 2020, 32, 1003-1027.	8.4	33
25	Can we further improve tablet-based drawing to enhance learning? An empirical test of two types of support. Instructional Science, 2020, 48, 453-474.	2.0	10
26	Pupil diameter differentiates expertise in dental radiography visual search. PLoS ONE, 2020, 15, e0223941.	2.5	15
27	Embracing complexity in research on learning from examples and from problem solving. Applied Cognitive Psychology, 2020, 34, 906-911.	1.6	9
28	Implementation Intentions Related to Self-Regulatory Processes Do Not Enhance Learning in a Multimedia Environment. Frontiers in Psychology, 2020, 11, 46.	2.1	7
29	Learning by explaining orally or in written form? Text complexity matters. Learning and Instruction, 2020, 68, 101344.	3.2	39
30	Deep semantic gaze embedding and scanpath comparison for expertise classification during OPT viewing. , 2020, , .		24
31	Multimediales Lernen: Lehren und Lernen mit Texten und Bildern. , 2020, , 31-56.		5
32	"Now move like that fish― Can enactment help learners come to understand dynamic motion presented in photographs and videos?. Computers and Education, 2020, 155, 103934.	8.3	9
33	Investigating the Influence of Simultaneous– Versus Sequential–Text-Picture Presentation on Text-Picture Integration. Journal of Experimental Education, 2019, 87, 116-127.	2.6	4
34	Specifying the boundary conditions of the multimedia effect: The influence of content and its distribution between text and pictures. British Journal of Psychology, 2019, 110, 126-150.	2.3	11
35	Adaptive multimedia: Using gaze-contingent instructional guidance to provide personalized processing support. Computers and Education, 2019, 139, 31-47.	8.3	37
36	Does text–picture integration also occur with longer text segments?. Applied Cognitive Psychology, 2019, 33, 1137-1146.	1.6	3

#	Article	IF	CITATIONS
37	Studying the expertise reversal of the multimedia signaling effect at a process level: evidence from eye tracking. Instructional Science, 2019, 47, 627-658.	2.0	22
38	Just follow my eyes: The influence of model-observer similarity on Eye Movement Modeling Examples. Learning and Instruction, 2019, 61, 126-137.	3.2	27
39	Why do learners who draw perform well? Investigating the role of visualization, generation and externalization in learner-generated drawing. Learning and Instruction, 2019, 60, 138-153.	3.2	55
40	Digitalisierung in der Lehrerbildung. Herausforderungen, Entwicklungsfelder und FĶrderung von Gesamtkonzepten. Die Deutsche Schule, 2019, 111, 103-119.	0.2	48
41	The Impact of Problem Order: Sequencing Problems as a Strategy for Improving One s Performance. , 2019, , 798-803.		5
42	Supporting Learning from Worked-Out Examples in Computer-Based Learning Environments. , 2019, , 301-306.		0
43	Selfâ€regulated learning from illustrated text: Eye movement modelling to support use and regulation of cognitive processes during learning from multimedia. British Journal of Educational Psychology, 2018, 88, 80-94.	2.9	54
44	Multimediales Lernen: Lehren und Lernen mit Texten und Bildern. , 2018, , 1-26.		0
45	Gender Stereotypes in a Children's Television Program: Effects on Girls' and Boys' Stereotype Endorsement, Math Performance, Motivational Dispositions, and Attitudes. Frontiers in Psychology, 2018, 9, 2435.	2.1	24
46	The effect of layout and pacing on learning from diagrams with unnecessary text. Applied Cognitive Psychology, 2018, 32, 610-621.	1.6	4
47	Effects of task experience and layout on learning from text and pictures with or without unnecessary picture descriptions. Journal of Computer Assisted Learning, 2018, 34, 458-470.	5.1	13
48	Scanpath comparison in medical image reading skills of dental students. , 2018, , .		31
49	Signaling text–picture relations in multimedia learning: The influence of prior knowledge Journal of Educational Psychology, 2018, 110, 544-560.	2.9	43
50	The Use of Eye Tracking as a Research and Instructional Tool in Multimedia Learning. , 2018, , 698-719.		0
51	Studying Visual Displays: How to Instructionally Support Learning. Educational Psychology Review, 2017, 29, 599-621.	8.4	120
52	Do drawing tasks improve monitoring and control during learning from text?. Learning and Instruction, 2017, 51, 10-25.	3.2	57
53	Learning from Multimedia: Cognitive Processes and Instructional Support. , 2017, , 1-19.		8
54	Do it twice! Test-taking fosters repeated but not initial study of multimedia instruction. Learning and Instruction, 2017, 52, 36-45.	3.2	2

#	Article	IF	CITATIONS
55	How to sequence video modeling examples and inquiry tasks to foster scientific reasoning. Learning and Instruction, 2017, 52, 46-58.	3.2	56
56	Using eye movements to model the sequence of text–picture processing for multimedia comprehension. Journal of Computer Assisted Learning, 2017, 33, 443-460.	5.1	38
57	Why Sketching May Aid Learning From Science Texts: Contrasting Sketching With Written Explanations. Topics in Cognitive Science, 2017, 9, 866-882.	1.9	44
58	How to Design Adaptive Information Environments to Support Self-Regulated Learning with Multimedia. , 2017, , 203-223.		7
59	Design of Effective Dynamic Visualizations: A Struggle Between the Beauty and the Beast? Commentary on Parts I and II. , 2017, , 233-251.		6
60	The Use of Eye Tracking as a Research and Instructional Tool in Multimedia Learning. Advances in Educational Technologies and Instructional Design Book Series, 2017, , 143-164.	0.2	25
61	Exploring the lack of a disfluency effect: evidence from eye movements. Metacognition and Learning, 2016, 11, 71-88.	2.7	19
62	Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review, 2016, 17, 19-36.	7.8	166
63	Text–Picture Integration: How Delayed Testing Moderates Recognition of Pictorial Information in Multimedia Learning. Applied Cognitive Psychology, 2015, 29, 702-712.	1.6	17
64	Does a Strategy Training Foster Students' Ability to Learn From Multimedia?. Journal of Experimental Education, 2015, 83, 266-289.	2.6	16
65	Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 2015, 36, 11-26.	3.2	123
66	Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning and Instruction, 2015, 35, 1-15.	3.2	50
67	Processing multimedia material: Does integration of text and pictures result in a single or two interconnected mental representations?. Learning and Instruction, 2015, 35, 62-72.	3.2	40
68	Picture or Text First? Explaining Sequence Effects when Learning with Pictures and Text. Educational Psychology Review, 2015, 27, 153-180.	8.4	67
69	Distraction during learning with hypermedia: difficult tasks help to keep task goals on track. Frontiers in Psychology, 2014, 5, 268.	2.1	20
70	The Role of Working Memory when †̃Learning How' with Multimedia Learning Material. Applied Cognitive Psychology, 2014, 28, 327-335.	1.6	10
71	A Call for an Unbiased Search for Moderators in Disfluency Research: Reply to Oppenheimer and Alter (2014). Applied Cognitive Psychology, 2014, 28, 805-806.	1.6	15
72	Disfluency Meets Cognitive Load in Multimedia Learning: Does Harderâ€toâ€Read Mean Betterâ€toâ€Understand?. Applied Cognitive Psychology, 2014, 28, 488-501.	1.6	56

#	Article	IF	CITATIONS
73	Analyse und Förderung effektiver Lehr-Lernprozesse im Kontext evidenzbasierter Bildungsreform – BeitrA g e der TÃ1⁄4binger Forschergruppe fÃ1⁄4r Empirische Bildungsforschung. Zeitschrift Fur Erziehungswissenschaft, 2014, 17, 189-192.	2.9	1
74	Learning with dynamic and static visualizations: Realistic details only benefit learners with high visuospatial abilities. Computers in Human Behavior, 2014, 36, 330-339.	8.5	60
75	Extending multimedia research: How do prerequisite knowledge and reading comprehension affect learning from text and pictures. Computers in Human Behavior, 2014, 31, 73-84.	8.5	41
76	The Learner Control Principle in Multimedia Learning. , 2014, , 487-512.		29
77	A Motivational Determinant of Facial Emotion Recognition: Regulatory Focus Affects Recognition of Emotions in Faces. PLoS ONE, 2014, 9, e112383.	2.5	11
78	Simultaneous and Sequential Presentation of Realistic and Schematic Instructional Dynamic Visualizations. , 2014, , 605-622.		3
79	Learning to see: Guiding students' attention via a Model's eye movements fosters learning. Learning and Instruction, 2013, 25, 62-70.	3.2	165
80	Is spoken text always better? Investigating the modality and redundancy effect with longer text presentation. Computers in Human Behavior, 2013, 29, 1590-1601.	8.5	56
81	How a picture facilitates the process of learning from text: Evidence for scaffolding. Learning and Instruction, 2013, 28, 48-63.	3.2	118
82	Learning about locomotion patterns: Effective use of multiple pictures and motion-indicating arrows. Computers and Education, 2013, 65, 45-55.	8.3	26
83	How Inspecting a Picture Affects Processing of Text in Multimedia Learning. Applied Cognitive Psychology, 2013, 27, 451-461.	1.6	64
84	Hypermedia and Self-Regulation: An Interplay in Both Directions. Springer International Handbooks of Education, 2013, , 129-141.	0.1	4
85	The Time Course of Information Extraction from Instructional Diagrams. Perceptual and Motor Skills, 2012, 115, 677-701.	1.3	17
86	Comparing and combining traditional teaching approaches and the use of video clips for learning how to identify species in an aquarium. Journal of Biological Education, 2012, 46, 140-148.	1.5	10
87	Conveying clinical reasoning based on visual observation via eye-movement modelling examples. Instructional Science, 2012, 40, 813-827.	2.0	127
88	Examining learning from text and pictures for different task types: Does the multimedia effect differ for conceptual, causal, and procedural tasks?. Computers in Human Behavior, 2012, 28, 2209-2218.	8.5	33
89	Verbal descriptions of spatial information can interfere with picture processing. Memory, 2012, 20, 682-699.	1.7	11
90	Explaining the modality effect in multimedia learning: Is it due to a lack of temporal contiguity with written text and pictures?. Learning and Instruction, 2012, 22, 92-102.	3.2	44

#	Article	IF	CITATIONS
91	How temporal and spatial aspects of presenting visualizations affect learning about locomotion patterns. Learning and Instruction, 2012, 22, 193-205.	3.2	43
92	Can differences in learning strategies explain the benefits of learning from static and dynamic visualizations?. Computers and Education, 2011, 56, 176-187.	8.3	78
93	Learning about locomotion patterns from visualizations: Effects of presentation format and realism. Computers and Education, 2011, 57, 1961-1970.	8.3	40
94	The perceptual basis of the modality effect in multimedia learning Journal of Experimental Psychology: Applied, 2011, 17, 159-173.	1.2	45
95	The role of spatial descriptions in learning from multimedia. Computers in Human Behavior, 2011, 27, 22-28.	8.5	54
96	The influence of text modality on learning with static and dynamic visualizations. Computers in Human Behavior, 2011, 27, 29-35.	8.5	68
97	The Role of Working Memory in Multimedia Instruction: Is Working Memory Working During Learning from Text and Pictures?. Educational Psychology Review, 2011, 23, 389-411.	8.4	49
98	The acquisition of problem-solving skills in mathematics: How animations can aid understanding of structural problem features and solution procedures. Instructional Science, 2010, 38, 487-502.	2.0	42
99	The speaker/gender effect: does the speaker's gender matter when presenting auditory text in multimedia messages?. Instructional Science, 2010, 38, 503-521.	2.0	32
100	In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 2010, 20, 146-154.	3.2	288
101	Cognitive and socio-motivational aspects in learning with animations: there is more to it than â€~do they aid learning or not'. Instructional Science, 2010, 38, 435-440.	2.0	7
102	Getting a Clue: Gist Extraction from Scenes and Causal Systems. Lecture Notes in Computer Science, 2010, , 243-249.	1.3	1
103	The Effects of Signals on Learning from Text and Diagrams: How Looking at Diagrams Earlier and More Frequently Improves Understanding. Lecture Notes in Computer Science, 2010, , 264-270.	1.3	9
104	Can Text Content Influence the Effectiveness of Diagrams?. Lecture Notes in Computer Science, 2010, , 322-324.	1.3	0
105	Learning with hypermedia: The influence of representational formats and different levels of learner control on performance and learning behavior. Computers in Human Behavior, 2009, 25, 360-370.	8.5	85
106	Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load?. Computers in Human Behavior, 2009, 25, 315-324.	8.5	293
107	Attention guidance during example study via the model's eye movements. Computers in Human Behavior, 2009, 25, 785-791.	8.5	164
108	Using eye tracking in applied research to study and stimulate the processing of information from multiâ€representational sources. Applied Cognitive Psychology, 2009, 23, 1209-1214.	1.6	52

#	Article	IF	CITATIONS
109	The Scientific Value of Cognitive Load Theory: A Research Agenda Based on the Structuralist View of Theories. Educational Psychology Review, 2009, 21, 43-54.	8.4	93
110	The effects of realism in learning with dynamic visualizations. Learning and Instruction, 2009, 19, 481-494.	3.2	119
111	The impact of learner characteristics on information utilization strategies, cognitive load experienced, and performance in hypermedia learning. Learning and Instruction, 2009, 19, 387-401.	3.2	65
112	Situated learning in the mobile age: mobile devices on a field trip to the sea. Research in Learning Technology, 2009, 17, 187-199.	0.7	28
113	Theoretical and Instructional Aspects of Learning with Visualizations. , 2009, , 67-88.		15
114	Information comparisons in example-based hypermedia environments: supporting learners with processing prompts and an interactive comparison tool. Educational Technology Research and Development, 2008, 56, 73-92.	2.8	57
115	Looking my way through the menu. , 2008, , .		32
116	The relation between design patterns and schema theory. , 2008, , .		12
117	The Influence of Spatial Text Information on the Multimedia Effect. , 2008, , 217-225.		1
118	Lernen mit Multimedia. Psychologische Rundschau, 2008, 59, 98-107.	0.2	18
119	How does it Swim?. , 2008, , 135-142.		0
120	Guiding Students' Attention During Example Study by Showing the Model's Eye Movements. , 2008, , 189-196.		1
121	Learner Control in Hypermedia Environments. Educational Psychology Review, 2007, 19, 285-307.	8.4	252
122	Making Your Own Order: Order Effects in System- and User-Controlled Settings for Learning and Problem Solving. , 2007, , 195-212.		6
123	Can learning from molar and modular worked examples be enhanced by providing instructional explanations and prompting self-explanations?. Learning and Instruction, 2006, 16, 104-121.	3.2	124
124	Information visualizations for knowledge acquisition: The impact of dimensionality and color coding. Computers in Human Behavior, 2006, 22, 43-65.	8.5	66
125	Making the abstract concrete: Visualizing mathematical solution procedures. Computers in Human Behavior, 2006, 22, 9-25.	8.5	67
126	Instruktionale Unterstützung beim Fertigkeitserwerb aus Beispielen in hypertextbasierten Lernumgebungen. Zeitschrift Fur Padagogische Psychologie, 2005, 19, 23-38.	3.0	15

#	Article	IF	CITATIONS
127	Designing Instructional Examples to Reduce Intrinsic Cognitive Load: Molar versus Modular Presentation of Solution Procedures. Instructional Science, 2004, 32, 33-58.	2.0	162
128	Goal Configurations and Processing Strategies as Moderators Between Instructional Design and Cognitive Load: Evidence From Hypertext-Based Instruction. Educational Psychologist, 2003, 38, 33-41.	9.0	129
129	Does Active or Passive Signaling Support Integration of Text and Graphs?. Applied Cognitive Psychology, 0, , .	1.6	2