Takashi Kitao

List of Publications by Citations

Source: https://exaly.com/author-pdf/6891898/takashi-kitao-publications-by-citations.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 36 1,317 33 g-index h-index citations papers 1,616 10.2 5.02 39 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
33	Hybridization of MOFs and polymers. <i>Chemical Society Reviews</i> , 2017 , 46, 3108-3133	58.5	515
32	Nanostructuration of PEDOT in Porous Coordination Polymers for Tunable Porosity and Conductivity. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10088-91	16.4	152
31	A phase transformable ultrastable titanium-carboxylate framework for photoconduction. <i>Nature Communications</i> , 2018 , 9, 1660	17.4	98
30	Supramolecular Chiral Nanoarchitectonics. <i>Advanced Materials</i> , 2020 , 32, e1905657	24	76
29	Confinement of single polysilane chains in coordination nanospaces. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5231-8	16.4	61
28	Controlled polymerizations using metal-organic frameworks. <i>Chemical Communications</i> , 2018 , 54, 1184	13 5 1885	6 6 60
27	Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 708-13	16.4	41
26	Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect. <i>Inorganic Chemistry</i> , 2018 , 57, 6584-6598	5.1	33
25	Recognition of Polymer Terminus by Metal-Organic Frameworks Enabling Chromatographic Separation of Polymers. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3701-3705	16.4	28
24	Transcription of Chirality from Metal-Organic Framework to Polythiophene. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19565-19569	16.4	28
23	Preparation of polythiophene microrods with ordered chain alignment using nanoporous coordination template. <i>Polymer Chemistry</i> , 2017 , 8, 5077-5081	4.9	26
22	Selective sorting of polymers with different terminal groups using metal-organic frameworks. <i>Nature Communications</i> , 2018 , 9, 3635	17.4	26
21	Formation of coordination polymer glass by mechanical milling: dependence on metal ions and molecular doping for H conductivity. <i>Chemical Communications</i> , 2018 , 54, 6859-6862	5.8	23
20	Scalable and Precise Synthesis of Armchair-Edge Graphene Nanoribbon in Metal-Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5509-5514	16.4	19
19	A fluorescent microporous crystalline dendrimer discriminates vapour molecules. <i>Chemical Communications</i> , 2018 , 54, 2534-2537	5.8	17
18	Oxidative polymerization of terthiophene and a substituted thiophene monomer in metal-organic framework thin films. <i>European Polymer Journal</i> , 2018 , 109, 162-168	5.2	17
17	Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity. <i>Communications Chemistry</i> , 2019 , 2,	6.3	15

LIST OF PUBLICATIONS

Fluorinated porous molecular crystals: vapor-triggered on-off switching of luminescence and porosity. <i>Chemical Communications</i> , 2019 , 55, 6487-6490	5.8	14
Carbonization of single polyacrylonitrile chains in coordination nanospaces. <i>Chemical Science</i> , 2020 , 11, 10844-10849	9.4	14
Polymers in Metal Drganic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. <i>Chemistry Letters</i> , 2020 , 49, 624-632	1.7	10
Controlled Organization of Anthracene in Porous Coordination Polymers. <i>Chemistry Letters</i> , 2017 , 46, 1705-1707	1.7	9
Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. <i>Angewandte Chemie</i> , 2016 , 128, 718-723	3.6	8
Hybridization of Synthetic Humins with a Metal-Organic Framework for Precious Metal Recovery and Reuse <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 60027-60034	9.5	8
Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 24182-24189	3.8	7
Isostructural mesoporous ionic crystals as a tunable platform for acid catalysis. <i>Dalton Transactions</i> , 2020 , 49, 10328-10333	4.3	4
Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. <i>Nanoscale</i> , 2021 , 13, 18451-18457	7.7	4
Bio-adhesive Nanoporous Module: Toward Autonomous Gating. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 8932-8937	16.4	1
Chiral Induction in Buckminsterfullerene Using a Metal®rganic Framework. <i>Angewandte Chemie</i> , 2021 , 133, 18091-18095	3.6	1
Chiral Induction in Buckminsterfullerene Using a Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17947-17951	16.4	1
Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability <i>RSC Advances</i> , 2021 , 11, 22756-22760	3.7	1
Titelbild: Bio-adhesive Nanoporous Module: Toward Autonomous Gating (Angew. Chem. 16/2021). <i>Angewandte Chemie</i> , 2021 , 133, 8641-8641	3.6	O
Bio-adhesive Nanoporous Module: Toward Autonomous Gating. <i>Angewandte Chemie</i> , 2021 , 133, 9014-	9031 9	
Controlled assemblies of conjugated polymers in metalBrganic frameworks. <i>Polymer Journal</i> ,	2.7	
	Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chemical Science, 2020, 11, 10844-10849 Polymers in MetalDrganic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. Chemistry Letters, 2020, 49, 624-632 Controlled Organization of Anthracene in Porous Coordination Polymers. Chemistry Letters, 2017, 46, 1705-1707 Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie, 2016, 128, 718-723 Hybridization of Synthetic Humins with a Metal-Organic Framework for Precious Metal Recovery and Reuse. ACS Applied Materials & Description of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. Journal of Physical Chemistry C, 2018, 122, 24182-24189 Isostructural mesoporous ionic crystals as a tunable platform for acid catalysis. Dalton Transactions, 2020, 49, 10328-10333 Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. Nanoscale, 2021, 13, 18451-18457 Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angewandte Chemie - International Edition, 2021, 60, 8932-8937 Chiral Induction in Buckminsterfullerene Using a Metal-Organic Framework. Angewandte Chemie-International Edition, 2021, 60, 17947-17951 Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability. RSC Advances, 2021, 11, 22756-22760 Titelbild: Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angewandte Chemie, 2021, 133, 9014-	Carbonization of single polyacrylonitrile chains in coordination nanospaces. Chemical Science, 2020, 11, 10844-10849 Polymers in MetalDrganic Frameworks: From Nanostructured Chain Assemblies to New Functional Materials. Chemistry Letters, 2020, 49, 624-632 Controlled Organization of Anthracene in Porous Coordination Polymers. Chemistry Letters, 2017, 46, 1705-1707 Unraveling Inter- and Intrachain Electronics in Polythiophene Assemblies Mediated by Coordination Nanospaces. Angewandte Chemie, 2016, 128, 718-723 Hybridization of Synthetic Humins with a Metal-Organic Framework for Precious Metal Recovery and Reuse ACS Applied Materials & Amp; Interfaces, 2021, 13, 60027-60034 Selective Formation of End-on Orientation between Polythiophene and Fullerene Mediated by Coordination Nanospaces. Journal of Physical Chemistry C, 2018, 122, 24182-24189 Isostructural mesoporous ionic crystals as a tunable platform for acid catalysis. Dalton Transactions, 2020, 49, 10328-10333 Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. Nanoscale, 2021, 13, 18451-18457 Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angewandte Chemie - International Edition, 2021, 60, 8932-8937 Chiral Induction in Buckminsterfullerene Using a Metal-Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17947-17951 Synthesis of a metal-organic framework by plasma in liquid to increase reduced metal ions and enhance water stability. RSC Advances, 2021, 11, 22756-22760 Titelbild: Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angewandte Chemie, 2021, 133, 9014-9016 Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angewandte Chemie, 2021, 133, 9014-9016