
Jaime Gomez-Morales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6891135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Progress on the preparation of nanocrystalline apatites and surface characterization: Overview of fundamental and applied aspects. Progress in Crystal Growth and Characterization of Materials, 2013, 59, 1-46.	1.8	219
2	Nanosized Hydroxyapatite Precipitation from Homogeneous Calcium/Citrate/Phosphate Solutions Using Microwave and Conventional Heating. Advanced Materials, 1998, 10, 49-53.	11.1	184
3	Crystallization of bioinspired citrate-functionalized nanoapatite with tailored carbonate content. Acta Biomaterialia, 2012, 8, 3491-3499.	4.1	134
4	Nucleation of calcium carbonate at different initial pH conditions. Journal of Crystal Growth, 1996, 169, 331-338.	0.7	113
5	Calcite precipitation by a high-pressure CO2 carbonation route. Journal of Supercritical Fluids, 2006, 36, 202-215.	1.6	96
6	Crystal Size, Morphology, and Growth Mechanism in Bioâ€Inspired Apatite Nanocrystals. Advanced Functional Materials, 2014, 24, 1090-1099.	7.8	93
7	The Role of pH in the Adsorption of Citrate Ions on Hydroxyapatite. Journal of Colloid and Interface Science, 1998, 200, 114-120.	5.0	91
8	Fluoride-doped amorphous calcium phosphate nanoparticles as a promising biomimetic material for dental remineralization. Scientific Reports, 2018, 8, 17016.	1.6	90
9	Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. Journal of Inorganic Biochemistry, 2005, 99, 1043-1050.	1.5	88
10	pH-Responsive Delivery of Doxorubicin from Citrate–Apatite Nanocrystals with Tailored Carbonate Content. Langmuir, 2013, 29, 8213-8221.	1.6	88
11	Rhombohedral–scalenohedral calcite transition produced by adjusting the solution electrical conductivity in the system Ca(OH)2–CO2–H2O. Journal of Colloid and Interface Science, 2003, 261, 434-440.	5.0	84
12	Hydroxyapatite precipitation: A case of nucleation-aggregation-agglomeration-growth mechanism. Journal of the European Ceramic Society, 1998, 18, 1351-1356.	2.8	82
13	Influence of Model Globular Proteins with Different Isoelectric Points on the Precipitation of Calcium Carbonate. Crystal Growth and Design, 2008, 8, 1495-1502.	1.4	79
14	Cell Surface Receptor Targeted Biomimetic Apatite Nanocrystals for Cancer Therapy. Small, 2013, 9, 3834-3844.	5.2	76
15	Magnetic Bioactive and Biodegradable Hollow Fe-Doped Hydroxyapatite Coated Poly(<scp>l</scp> -lactic) Acid Micro-nanospheres. Chemistry of Materials, 2013, 25, 2610-2617.	3.2	70
16	Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2–H2O–CO2 system. Journal of Crystal Growth, 2003, 249, 561-571.	0.7	66
17	Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. Journal of Crystal Growth, 2004, 271, 268-273.	0.7	61
18	Calcium carbonate precipitation from aqueous solutions containing Aerosol OT. Journal of Crystal Growth, 1996, 166, 1015-1019.	0.7	59

JAIME GOMEZ-MORALES

#	Article	IF	CITATIONS
19	Identification of Some Active Proteins in the Process of Hen Eggshell Formation. Crystal Growth and Design, 2008, 8, 4330-4339.	1.4	59
20	The growth mechanism of apatite nanocrystals assisted by citrate: relevance to bone biomineralization. CrystEngComm, 2015, 17, 507-511.	1.3	58
21	Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3). Journal of Crystal Growth, 2008, 310, 1754-1759.	0.7	57
22	Biomimetic Carbonate–Hydroxyapatite Nanocrystals Prepared by Vapor Diffusion. Advanced Engineering Materials, 2010, 12, B218.	1.6	52
23	Microwave precipitation of CaCO3 from homogeneous solutions. Journal of Crystal Growth, 1996, 169, 339-346.	0.7	47
24	pH-Dependent Adsorption Release of Doxorubicin on MamC-Biomimetic Magnetite Nanoparticles. Langmuir, 2018, 34, 13713-13724.	1.6	46
25	Comparative preparation of microporous VPI-5 using conventional and microwave heating techniques. Zeolites, 1997, 18, 340-346.	0.9	42
26	Precipitation of calcium carbonate from solutions with varying ratios. Journal of Crystal Growth, 1996, 166, 1020-1026.	0.7	41
27	Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets. Crystal Growth and Design, 2011, 11, 4802-4809.	1.4	41
28	Silica Gel Template for Calcium Phosphates Crystallization. Crystal Growth and Design, 2009, 9, 4912-4921.	1.4	39
29	Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy. CrystEngComm, 2013, 15, 2206.	1.3	36
30	Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility. RSC Advances, 2018, 8, 2385-2397.	1.7	36
31	Controlled Nucleation and Growth of Thin Hydroxyapatite Layers on Titanium Implants by Using Induction Heating Technique. Langmuir, 2004, 20, 5174-5178.	1.6	35
32	Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO2 through a Ca(OH)2 suspension in the presence of additives. Powder Technology, 2003, 130, 307-315.	2.1	34
33	Nucleation and Polymorphism of Calcium Carbonate by a Vapor Diffusion Sitting Drop Crystallization Technique. Crystal Growth and Design, 2010, 10, 963-969.	1.4	33
34	Bioinspired Citrate–Apatite Nanocrystals Doped with Divalent Transition Metal Ions. Crystal Growth and Design, 2016, 16, 145-153.	1.4	32
35	Influence of Charged Polypeptides on Nucleation and Growth of CaCO ₃ Evaluated by Counterdiffusion Experiments. Crystal Growth and Design, 2013, 13, 3884-3891.	1.4	30
36	On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Scientific Reports, 2017, 7, 8901.	1.6	29

JAIME GOMEZ-MORALES

#	Article	IF	CITATIONS
37	The mechanism of precipitation of chain-like calcite. Journal of Crystal Growth, 2004, 262, 479-489.	0.7	28
38	Transient Calcium Carbonate Hexahydrate (Ikaite) Nucleated and Stabilized in Confined Nano- and Picovolumes. Crystal Growth and Design, 2014, 14, 792-802.	1.4	28
39	Monoclonal Antibody-Targeted Fluorescein-5-isothiocyanate-Labeled Biomimetic Nanoapatites: A Promising Fluorescent Probe for Imaging Applications. Langmuir, 2015, 31, 1766-1775.	1.6	26
40	Role of CaCO ₃ ° Neutral Pair in Calcium Carbonate Crystallization. Crystal Growth and Design, 2016, 16, 4173-4177.	1.4	22
41	Crystal Size Distribution of Hydroxyapatite Precipitated in a MSMPR Reactor. Crystal Research and Technology, 2001, 36, 1065-1074.	0.6	21
42	Exploring coral biomineralization in gelling environments by means of a counter diffusion system. CrystEngComm, 2014, 16, 1257-1267.	1.3	20
43	Preparation of core–shell poly(l-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications. Journal of Materials Science: Materials in Medicine, 2012, 23, 2659-2669.	1.7	18
44	The mechanism of precipitation of colloidal variscite (AlPO4 · 2H2O) particles. Journal of Colloid and Interface Science, 1992, 151, 555-562.	5.0	17
45	Clean ("Greenâ€) Ion-Exchange Technologies. 4. High-Ca-Selectivity Ion-Exchange Material for Self-Sustaining Decalcification of Mineralized Waters Process. Industrial & Engineering Chemistry Research, 2004, 43, 1868-1874.	1.8	17
46	Calcium carbonate bio-precipitation in counter-diffusion systems using the soluble organic matrix from nacre and sea-urchin spine. European Journal of Mineralogy, 2014, 26, 523-535.	0.4	17
47	Formation of calcium phosphates by vapour diffusion in highly concentrated ionic microâ€droplets. Crystal Research and Technology, 2011, 46, 841-846.	0.6	16
48	Title is missing!. Journal of Materials Synthesis and Processing, 1999, 7, 211-219.	0.3	15
49	Analysis of the Structural Integrity of SU-8-Based Optofluidic Systems for Small-Molecule Crystallization Studies. Analytical Chemistry, 2013, 85, 9678-9685.	3.2	15
50	Characterization and identification of berlinite crystals by acoustic microscopy. Journal of Materials Research, 1991, 6, 2484-2489.	1.2	14
51	Monitoring Picoliter Sessile Microdroplet Dynamics Shows That Size Does Not Matter. Langmuir, 2013, 29, 12628-12632.	1.6	14
52	New injectable two-step forming hydrogel for delivery of bioactive substances in tissue regeneration. International Journal of Energy Production and Management, 2019, 6, 149-162.	1.9	14
53	Polypeptide effect on Mg ²⁺ hydration inferred from CaCO ₃ formation: a biomineralization study by counter-diffusion. CrystEngComm, 2016, 18, 3265-3272.	1.3	13
54	Interconvertible Hydrochlorothiazide–Caffeine Multicomponent Pharmaceutical Materials: A Solvent Issue. Crystals, 2020, 10, 1088.	1.0	13

#	Article	IF	CITATIONS
55	Preparation of Chromium Hydroxide Sub-micro- and Nanoparticles by Microwave Dielectric Heating. Langmuir, 2003, 19, 9110-9113.	1.6	12
56	Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. Journal of Colloid and Interface Science, 2019, 538, 174-186.	5.0	11
57	Role of citrate in the formation of enamel-like calcium phosphate oriented nanorod arrays. CrystEngComm, 2019, 21, 4684-4689.	1.3	10
58	Furosemide/Non-Steroidal Anti-Inflammatory Drug–Drug Pharmaceutical Solids: Novel Opportunities in Drug Formulation. Crystals, 2021, 11, 1339.	1.0	10
59	pH-responsive collagen fibrillogenesis in confined droplets induced by vapour diffusion. Journal of Materials Science: Materials in Medicine, 2014, 25, 2305-2312.	1.7	9
60	Novel Polymorphic Cocrystals of the Non-Steroidal Anti-Inflammatory Drug Niflumic Acid: Expanding the Pharmaceutical Landscape. Pharmaceutics, 2021, 13, 2140.	2.0	9
61	Bio-inspired citrate-functionalized apatite thin films crystallized on Ti–6Al–4V implants pre-coated with corrosion resistant layers. Journal of Inorganic Biochemistry, 2013, 127, 261-268.	1.5	8
62	Bioinspired Mineralization of Type I Collagen Fibrils with Apatite in Presence of Citrate and Europium Ions. Crystals, 2019, 9, 13.	1.0	8
63	Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. Nanomaterials, 2020, 10, 199.	1.9	8
64	Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. Nanomaterials, 2021, 11, 322.	1.9	8
65	Directed Crystallization of Selected Aluminophosphate Hydrates by pH Control. Advanced Materials, 1998, 10, 46-49.	11.1	7
66	Biological Crystallization. , 2015, , 873-913.		7
67	Calcium Phosphate Surface Tailoring Technologies for Drug Delivering and Tissue Engineering. , 2012, , 43-111.		7
68	Selfâ€Assembled Type I Collagenâ€Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromolecular Bioscience, 2021, 21, 2000319.	2.1	7
69	Luminescent Citrate-Functionalized Terbium-Substituted Carbonated Apatite Nanomaterials: Structural Aspects, Sensitized Luminescence, Cytocompatibility, and Cell Uptake Imaging. Nanomaterials, 2022, 12, 1257.	1.9	7
70	Bioinspired Calcium Phosphate Coated Mica Sheets by Vapor Diffusion and Its Effects on Lysozyme Assembly and Crystallization. Crystal Growth and Design, 2016, 16, 5150-5158.	1.4	6
71	Growth morphology of berlinite crystals obtained under hydrothermal conditions. Journal of Crystal Growth, 1993, 128, 1250-1256.	0.7	3
72	Hydrothermal synthesis and characterisation of tin doped ZnO polyscale crystals with hexylamine additive. Materials Research Innovations, 2012, 16, 25-29.	1.0	3

#	Article	IF	CITATIONS
73	Induced Nucleation of Biomimetic Nanoapatites on Exfoliated Graphene Biomolecule Flakes by Vapor Diffusion in Microdroplets. Crystals, 2019, 9, 341.	1.0	3
74	Biological Crystallization. Crystals, 2019, 9, 409.	1.0	2
75	Praziquantel-loaded calcite crystals: Synthesis, physicochemical characterization, and biopharmaceutical properties of inorganic biomaterials for drug delivery. Journal of Drug Delivery Science and Technology, 2022, 68, 103021.	1.4	2
76	Biomimetic Citrate-Coated Luminescent Apatite Nanoplatforms for Diclofenac Delivery in Inflammatory Environments. Nanomaterials, 2022, 12, 562.	1.9	2
77	Structural and surface studies of luminescent Ca/Eu phosphate nanomaterials: From the bulk to surface features. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112620.	2.5	2
78	Solubility of berlinite in H2SO4-HC1 mixtures under hydrothermal conditions. Journal of Crystal Growth, 1992, 116, 427-435.	0.7	1
79	Apatites: Crystal Size, Morphology, and Growth Mechanism in Bio-Inspired Apatite Nanocrystals (Adv.) Tj ETQq1	L 0.78431 7.8	4 rgBT /Over
80	Vapour Diffusion Sitting Drop Method to Induce Nucleation of Calcium Phosphate on Exfoliated Graphene and Graphene Oxide Flakes. Crystals, 2021, 11, 767.	1.0	1
81	The International Crystallization Schools IS(B)C of Granada. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C506-C506.	0.0	0
82	Biomimetic citrate-coated nano-apatites for biomedical and industrial applications. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C620-C620.	0.0	0
83	Vapour Diffusion Route to Mineralize Graphene and Polymer Surfaces with Calcium Phosphate Intended for Biomedical Applications. Key Engineering Materials, 0, 758, 210-214.	0.4	0
84	Vibrational Spectroscopies for Surface Characterization of Biomaterials. , 2012, , 130-152.		0