Javier Contreras Sanz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890951/publications.pdf

Version: 2024-02-01

177 papers 10,889 citations

53 h-index 100 g-index

177 all docs

177 docs citations

177 times ranked

6269 citing authors

#	Article	IF	Citations
1	ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 2003, 18, 1014-1020.	6.5	1,150
2	Forecasting next-day electricity prices by time series models. IEEE Transactions on Power Systems, 2002, 17, 342-348.	6.5	679
3	A GARCH Forecasting Model to Predict Day-Ahead Electricity Prices. IEEE Transactions on Power Systems, 2005, 20, 867-874.	6.5	558
4	Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 2005, 21, 435-462.	6.5	438
5	Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renewable Energy, 2007, 32, 1102-1126.	8.9	330
6	Self-scheduling of a hydro producer in a pool-based electricity market. IEEE Transactions on Power Systems, 2002, 17, 1265-1272.	6.5	270
7	A Three-Level Static MILP Model for Generation and Transmission Expansion Planning. IEEE Transactions on Power Systems, 2013, 28, 202-210.	6.5	216
8	Numerical Solutions to Nash–Cournot Equilibria in Coupled Constraint Electricity Markets. IEEE Transactions on Power Systems, 2004, 19, 195-206.	6.5	213
9	Transmission Expansion Planning in Electricity Markets. IEEE Transactions on Power Systems, 2008, 23, 238-248.	6.5	211
10	Joint Expansion Planning of Distributed Generation and Distribution Networks. IEEE Transactions on Power Systems, 2015, 30, 2579-2590.	6.5	195
11	Energy storage systems supporting increased penetration of renewables in islanded systems. Energy, 2014, 75, 265-280.	8.8	187
12	Unit Commitment With Ideal and Generic Energy Storage Units. IEEE Transactions on Power Systems, 2014, 29, 2974-2984.	6.5	177
13	Optimal Distributed Generation and Reactive Power Allocation in Electrical Distribution Systems. IEEE Transactions on Sustainable Energy, 2016, 7, 975-984.	8.8	160
14	Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storageâ€"Part I: Stochastic Programming Model. IEEE Transactions on Smart Grid, 2018, 9, 655-666.	9.0	160
15	Impact of Electric Vehicles on the Expansion Planning of Distribution Systems Considering Renewable Energy, Storage, and Charging Stations. IEEE Transactions on Smart Grid, 2019, 10, 794-804.	9.0	160
16	Multistage Generation and Network Expansion Planning in Distribution Systems Considering Uncertainty and Reliability. IEEE Transactions on Power Systems, 2016, 31, 3715-3728.	6.5	155
17	Allocation of Plug-In Vehicles' Parking Lots in Distribution Systems Considering Network-Constrained Objectives. IEEE Transactions on Power Systems, 2015, 30, 2643-2656.	6.5	154
18	Price maker self-scheduling in a pool-based electricity market: a mixed-integer LP approach. IEEE Transactions on Power Systems, 2002, 17, 1037-1042.	6.5	150

#	Article	IF	Citations
19	Medium-term energy hub management subject to electricity price and wind uncertainty. Applied Energy, 2016, 168, 418-433.	10.1	150
20	A kernel-oriented algorithm for transmission expansion planning. IEEE Transactions on Power Systems, 2000, 15, 1434-1440.	6.5	149
21	A Chance-Constrained Unit Commitment With an \$n-K\$ Security Criterion and Significant Wind Generation. IEEE Transactions on Power Systems, 2013, 28, 2842-2851.	6.5	143
22	Distribution System Planning With Reliability. IEEE Transactions on Power Delivery, 2011, 26, 2552-2562.	4.3	140
23	\$Z_{m bus}\$ Transmission Network Cost Allocation. IEEE Transactions on Power Systems, 2007, 22, 342-349.	6.5	115
24	Strategic Behavior of Multi-Energy Players in Electricity Markets as Aggregators of Demand Side Resources Using a Bi-Level Approach. IEEE Transactions on Power Systems, 2018, 33, 397-411.	6.5	113
25	Bi-Level Approach to Distribution Network and Renewable Energy Expansion Planning Considering Demand Response. IEEE Transactions on Power Systems, 2017, 32, 4298-4309.	6.5	112
26	A Stochastic Bilevel Model for the Energy Hub Manager Problem. IEEE Transactions on Smart Grid, 2017, 8, 2394-2404.	9.0	112
27	Optimal coordinated wind-hydro bidding strategies in day-ahead markets. IEEE Transactions on Power Systems, 2013, 28, 798-809.	6.5	111
28	Coalition formation in transmission expansion planning. IEEE Transactions on Power Systems, 1999, 14, 1144-1152.	6.5	100
29	Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting. International Journal of Electrical Power and Energy Systems, 2019, 105, 529-540.	5.5	100
30	Finding Multiperiod Nash Equilibria in Pool-Based Electricity Markets. IEEE Transactions on Power Systems, 2004, 19, 643-651.	6.5	95
31	A Stochastic Investment Model for Renewable Generation in Distribution Systems. IEEE Transactions on Sustainable Energy, 2015, 6, 1466-1474.	8.8	92
32	If you build it, he will come: Anticipative power transmission planning. Energy Economics, 2013, 36, 135-146.	12.1	89
33	Multiobjective multistage distribution system planning using tabu search. IET Generation, Transmission and Distribution, 2014, 8, 35-45.	2.5	88
34	Design of grid connected PV systems considering electrical, economical and environmental aspects: A practical case. Renewable Energy, 2006, 31, 2042-2062.	8.9	86
35	Finding Multiple Nash Equilibria in Pool-Based Markets: A Stochastic EPEC Approach. IEEE Transactions on Power Systems, 2011, 26, 1744-1752.	6.5	84
36	Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy, 2009, 37, 5273-5284.	8.8	83

#	Article	IF	CITATIONS
37	Optimal Contract Pricing of Distributed Generation in Distribution Networks. IEEE Transactions on Power Systems, 2011, 26, 128-136.	6.5	81
38	Risk-Constrained Optimal Bidding Strategy for Pairing of Wind and Demand Response Resources. IEEE Transactions on Smart Grid, 2017, 8, 200-208.	9.0	81
39	Distribution Network Expansion Planning With an Explicit Formulation for Reliability Assessment. IEEE Transactions on Power Systems, 2018, 33, 2583-2596.	6.5	78
40	Optimal hydro scheduling and offering strategies considering price uncertainty and risk management. Energy, 2012, 37, 237-244.	8.8	77
41	Location and contract pricing of distributed generation using a genetic algorithm. International Journal of Electrical Power and Energy Systems, 2012, 36, 117-126.	5.5	74
42	Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixedâ€integer linear programming. IET Generation, Transmission and Distribution, 2013, 7, 724-734.	2.5	71
43	Optimal response of an oligopolistic generating company to a competitive pool-based electric power market. IEEE Transactions on Power Systems, 2002, 17, 424-430.	6.5	70
44	Basic theoretical foundations and insights on bilevel models and their applications to power systems. Annals of Operations Research, 2017, 254, 303-334.	4.1	70
45	Optimal Single Wind Hydro-Pump Storage Bidding in Day-Ahead Markets Including Bilateral Contracts. IEEE Transactions on Sustainable Energy, 2016, 7, 1284-1294.	8.8	69
46	Contingency Assessment and Network Reconfiguration in Distribution Grids Including Wind Power and Energy Storage. IEEE Transactions on Sustainable Energy, 2015, 6, 1524-1533.	8.8	67
47	Modeling the Strategic Behavior of a Distribution Company in Wholesale Energy and Reserve Markets. IEEE Transactions on Smart Grid, 2018, 9, 3857-3870.	9.0	66
48	Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storageâ€"Part II: Numerical Results. IEEE Transactions on Smart Grid, 2018, 9, 667-675.	9.0	62
49	The impact of electric vehicle charging schemes in power system expansion planning. Applied Energy, 2020, 262, 114527.	10.1	62
50	Risk-constrained self-scheduling of a hybrid power plant considering interval-based intraday demand response exchange market prices. Journal of Cleaner Production, 2021, 282, 125344.	9.3	61
51	Novel Multi-Stage Stochastic DG Investment Planning with Recourse. IEEE Transactions on Sustainable Energy, 2017, 8, 164-178.	8.8	60
52	Forecasting Power Prices Using a Hybrid Fundamental-Econometric Model. IEEE Transactions on Power Systems, 2012, 27, 363-372.	6.5	56
53	A cobweb bidding model for competitive electricity markets. IEEE Transactions on Power Systems, 2002, 17, 148-153.	6.5	55
54	Trilateral Planning Model for Integrated Community Energy Systems and PV-Based Prosumers—A Bilevel Stochastic Programming Approach. IEEE Transactions on Power Systems, 2020, 35, 346-361.	6.5	55

#	Article	IF	CITATIONS
55	Optimal Scheduling of a Price-Taker Cascaded Reservoir System in a Pool-Based Electricity Market. IEEE Transactions on Power Systems, 2011, 26, 604-615.	6.5	54
56	Simulating oligopolistic pool-based electricity markets: a multiperiod approach. IEEE Transactions on Power Systems, 2003, 18, 1547-1555.	6.5	53
57	Reliability Assessment of Microgrids With Local and Mobile Generation, Time-Dependent Profiles, and Intraday Reconfiguration. IEEE Transactions on Industry Applications, 2018, 54, 61-72.	4.9	53
58	Optimal Bidding of a Group of Wind Farms in Day-Ahead Markets Through an External Agent. IEEE Transactions on Power Systems, 2016, 31, 2688-2700.	6.5	52
59	Risk-Constrained Scheduling and Offering Strategies of a Price-Maker Hydro Producer Under Uncertainty. IEEE Transactions on Power Systems, 2013, 28, 1879-1887.	6.5	51
60	Modeling the Impact of a Wind Power Producer as a Price-Maker. IEEE Transactions on Power Systems, 2014, 29, 2723-2732.	6. 5	51
61	A cooperative game theory analysis for transmission loss allocation. Electric Power Systems Research, 2008, 78, 264-275.	3.6	49
62	Nash-Cournot Equilibria in Hydrothermal Electricity Markets. IEEE Transactions on Power Systems, 2011, 26, 1089-1101.	6. 5	48
63	A novel energy scheduling framework for reliable and economic operation of islanded and grid-connected microgrids. Electric Power Systems Research, 2019, 171, 85-96.	3.6	48
64	A Stochastic Bilevel Model to Manage Active Distribution Networks With Multi-Microgrids. IEEE Systems Journal, 2019, 13, 4190-4199.	4.6	47
65	Impacts of Stochastic Wind Power and Storage Participation on Economic Dispatch in Distribution Systems. IEEE Transactions on Sustainable Energy, 2016, 7, 1336-1345.	8.8	45
66	Market-driven dynamic transmission expansion planning. Electric Power Systems Research, 2012, 82, 88-94.	3.6	44
67	Reliability Assessment for Distribution Optimization Models: A Non-Simulation-Based Linear Programming Approach. IEEE Transactions on Smart Grid, 2018, 9, 3048-3059.	9.0	44
68	Power engineering lab: electricity market simulator. IEEE Transactions on Power Systems, 2002, 17, 223-228.	6. 5	43
69	Distribution System Expansion Planning Considering Non-Utility-Owned DG and an Independent Distribution System Operator. IEEE Transactions on Power Systems, 2019, 34, 2588-2597.	6.5	43
70	An Enhanced Algebraic Approach for the Analytical Reliability Assessment of Distribution Systems. IEEE Transactions on Power Systems, 2019, 34, 2870-2879.	6.5	42
71	An overview on network cost allocation methods. Electric Power Systems Research, 2009, 79, 750-758.	3.6	41
72	A decision-making tool for project investments based on real options: the case of wind power generation. Annals of Operations Research, 2011, 186, 465-490.	4.1	41

#	Article	IF	Citations
73	A Multi-Stage Stochastic Non-Linear Model for Reactive Power Planning Under Contingencies. IEEE Transactions on Power Systems, 2013, 28, 1503-1514.	6.5	41
74	A Multiobjective Optimization Technique to Develop Protection Systems of Distribution Networks With Distributed Generation. IEEE Transactions on Power Systems, 2018, 33, 7064-7075.	6.5	41
75	An incentive-based mechanism for transmission asset investment. Decision Support Systems, 2009, 47, 22-31.	5.9	40
76	Carbon Footprint Management: A Pathway Toward Smart Emission Abatement. IEEE Transactions on Industrial Informatics, 2020, 16, 935-948.	11.3	39
77	EPEC approach for finding optimal day-ahead bidding strategy equilibria of multi-microgrids in active distribution networks. International Journal of Electrical Power and Energy Systems, 2020, 117, 105702.	5.5	38
78	An Effective Transmission Network Expansion Cost Allocation Based on Game Theory. IEEE Transactions on Power Systems, 2007, 22, 136-144.	6.5	35
79	Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response. Energies, 2019, 12, 1413.	3.1	35
80	An Enhanced MILP Model for Multistage Reliability-Constrained Distribution Network Expansion Planning. IEEE Transactions on Power Systems, 2022, 37, 118-131.	6.5	34
81	Energy storage and transmission expansion planning: substitutes or complements?. IET Generation, Transmission and Distribution, 2018, 12, 1738-1746.	2.5	33
82	Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model. Energy, 2021, 232, 120975.	8.8	33
83	Multi-agent approach to the planning of power transmission expansion. Decision Support Systems, 2000, 28, 279-290.	5.9	32
84	Simulation and evaluation of optimization problem solutions in distributed energy management systems. IEEE Transactions on Power Systems, 2002, 17, 57-62.	6.5	32
85	Auction design in day-ahead electricity markets. IEEE Transactions on Power Systems, 2001, 16, 88-96.	6.5	31
86	Impacts of Operational Variability and Uncertainty on Distributed Generation Investment Planning: A Comprehensive Sensitivity Analysis. IEEE Transactions on Sustainable Energy, 2017, 8, 855-869.	8.8	31
87	When doing nothing may be the best investment action: Pessimistic anticipative power transmission planning. Applied Energy, 2017, 200, 383-398.	10.1	27
88	Integrated Transmission and Distribution System Expansion Planning Under Uncertainty. IEEE Transactions on Smart Grid, 2021, 12, 4113-4125.	9.0	26
89	Reactive power planning under conditionalâ€valueâ€atâ€risk assessment using chanceâ€constrained optimisation. IET Generation, Transmission and Distribution, 2015, 9, 231-240.	2.5	24
90	Optimal Placement of Energy Storage and Wind Power under Uncertainty. Energies, 2016, 9, 528.	3.1	24

#	Article	IF	CITATIONS
91	Applying modern portfolio theory for a dynamic energy portfolio allocation in electricity markets. Electric Power Systems Research, 2017, 150, 11-23.	3.6	22
92	Min–max long run marginal cost to allocate transmission tariffs for transmission users. Electric Power Systems Research, 2013, 101, 25-35.	3.6	21
93	Linear Formulations for Topology-Variable-Based Distribution System Reliability Assessment Considering Switching Interruptions. IEEE Transactions on Smart Grid, 2020, 11, 4032-4043.	9.0	21
94	Multistage Planning Model for Active Distribution Systems and Electric Vehicle Charging Stations Considering Voltage-Dependent Load Behavior. IEEE Transactions on Smart Grid, 2022, 13, 1383-1397.	9.0	21
95	Realistic electricity market simulator for energy and economic studies. Electric Power Systems Research, 2007, 77, 46-54.	3.6	20
96	A convex chance-constrained model for reactive power planning. International Journal of Electrical Power and Energy Systems, 2015, 71, 403-411.	5 . 5	20
97	Medium―and lowâ€voltage planning of radial electric power distribution systems considering reliability. IET Generation, Transmission and Distribution, 2017, 11, 2212-2221.	2.5	20
98	Self-Scheduling of a Generating Company With an EV Load Aggregator Under an Energy Exchange Strategy. IEEE Transactions on Smart Grid, 2019, 10, 4253-4264.	9.0	18
99	Optimal Service Restoration in Active Distribution Networks Considering Microgrid Formation and Voltage Control Devices. IEEE Transactions on Industry Applications, 2021, 57, 5758-5771.	4.9	18
100	Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management. Applied Energy, 2021, 304, 117698.	10.1	18
101	ECOTOOL: A general MATLAB Forecasting Toolbox with Applications to Electricity Markets. Energy Systems, 2012, , 151-171.	0.5	17
102	Long-term Nash equilibria in electricity markets. Electric Power Systems Research, 2011, 81, 329-339.	3.6	16
103	Impact of network payment schemes on transmission expansion planning with variable renewable generation. Energy Economics, 2016, 56, 410-421.	12.1	16
104	Effect of Risk Aversion on Reserve Procurement With Flexible Demand Side Resources From the ISO Point of View. IEEE Transactions on Sustainable Energy, 2017, 8, 1040-1050.	8.8	16
105	Wind Put Barrier Options Pricing Based on the Nordix Index. Energies, 2021, 14, 1177.	3.1	16
106	Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming. Energies, 2016, 9, 1069.	3.1	15
107	Offering and bidding for a wind producer paired with battery and CAES units considering battery degradation. International Journal of Electrical Power and Energy Systems, 2022, 136, 107685.	5.5	15
108	Multistage reliability-based expansion planning of ac distribution networks using a mixed-integer linear programming model. International Journal of Electrical Power and Energy Systems, 2022, 138, 107916.	5.5	15

#	Article	IF	Citations
109	Optimal Wind Reversible Hydro Offering Strategies for Midterm Planning. IEEE Transactions on Sustainable Energy, 2015, 6, 1356-1366.	8.8	14
110	Efficient Automation of an HEV Heterogeneous Fleet Using a Two-Stage Methodology. IEEE Transactions on Vehicular Technology, 2019, 68, 9494-9506.	6.3	14
111	Optimal Selection of Navigation Modes of HEVs Considering CO ₂ Emissions Reduction. IEEE Transactions on Vehicular Technology, 2019, 68, 2196-2206.	6.3	14
112	A MILP model to relieve the occurrence of new demand peaks by improving the load factor in smart homes. Sustainable Cities and Society, 2021, 71, 102969.	10.4	13
113	DistOpt: A Software Framework for Modeling and Evaluating Optimization Problem Solutions in Distributed Environments. Journal of Parallel and Distributed Computing, 2000, 60, 741-763.	4.1	12
114	Transmission assets investment timing using net present value curves. Energy Policy, 2010, 38, 598-605.	8.8	12
115	Reactive Control for Transmission Overload Relief Based on Sensitivity Analysis and Cooperative Game Theory. IEEE Transactions on Power Systems, 2012, 27, 1192-1203.	6.5	12
116	GARCH-based put option valuation to maximize benefit of wind investors. Applied Energy, 2014, 136, 259-268.	10.1	12
117	A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks. Energies, 2020, 13, 3621.	3.1	12
118	Medium-term planning of active distribution systems considering voltage-dependent loads, network reconfiguration, and CO2 emissions. International Journal of Electrical Power and Energy Systems, 2022, 135, 107541.	5.5	12
119	Short-term optimal scheduling of a price-maker hydro producer in a pool-based day-ahead market. IET Generation, Transmission and Distribution, 2012, 6, 1243-1251.	2.5	11
120	A Principal-Agent Approach to Transmission Expansionâ€"Part I: Regulatory Framework. IEEE Transactions on Power Systems, 2013, 28, 256-263.	6.5	11
121	Incentives for wind power investment in Colombia. Renewable Energy, 2016, 87, 279-288.	8.9	11
122	Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement. Energies, 2021, 14, 3624.	3.1	11
123	Optimal Bilevel Operation-Planning Framework of Distributed Generation Hosting Capacity Considering Rival DISCO and EV Aggregator. IEEE Systems Journal, 2022, 16, 5023-5034.	4.6	11
124	Risk-constrained dynamic energy allocation for a wind power producer. Electric Power Systems Research, 2014, 116, 338-346.	3.6	10
125	Islanding in distribution systems considering wind power and storage. Sustainable Energy, Grids and Networks, 2016, 5, 156-166.	3.9	10
126	A Multiobjective Minimax Regret Robust VAr Planning Model. IEEE Transactions on Power Systems, 2017, 32, 1761-1771.	6.5	10

#	Article	IF	Citations
127	Construction of an efficient portfolio of power purchase decisions based on risk-diversification tradeoff. Energy Economics, 2017, 64, 286-297.	12.1	9
128	Economic externalities in transmission network expansion planning. Energy Economics, 2017, 68, 109-115.	12.1	9
129	The role of EV based peer-to-peer transactive energy hubs in distribution network optimization. Applied Energy, 2022, 319, 119267.	10.1	9
130	A New Transmission Tariff Allocation Model Based on Bilevel Programming. IEEE Transactions on Power Systems, 2017, 32, 2204-2213.	6.5	8
131	An Enhanced Delivery Route Operational Planning Model for Electric Vehicles. IEEE Access, 2020, 8, 141762-141776.	4.2	8
132	Competition of Thermal Electricity Generators with Coupled Transmission and Emission Constraints. Journal of Energy Engineering - ASCE, 2013, 139, 239-252.	1.9	7
133	Impact of the future water value on wind-reversible hydro offering strategies in electricity markets. Energy Conversion and Management, 2015, 105, 313-327.	9.2	7
134	Raiffa-Kalai-Smorodinsky Bargaining Solution for Bilateral Contracts in Electricity Markets. Energies, 2020, 13, 2397.	3.1	7
135	Diversified behavioral portfolio as an alternative to Modern Portfolio Theory. North American Journal of Economics and Finance, 2021, 58, 101508.	3.5	7
136	Forecasting Models of Electricity Prices. Energies, 2017, 10, 160.	3.1	6
137	A Stochastic Model for Medium-Term Distribution System Planning Considering CO ₂ Emissions., 2020,,.		6
138	Experience with an electricity market simulation tool. Production Planning and Control, 2003, 14, 135-145.	8.8	5
139	Optimal generic energy storage system offering in day-ahead electricity markets. , 2015, , .		5
140	Economics of collective monitoring: a study of environmentally constrained electricity generators. Computational Management Science, 2016, 13, 349-369.	1.3	5
141	A Linear Model for Operating Microgrids with Renewable Resources, Battery Degradation Costs and Electric Vehicles. , 2018, , .		5
142	A new parallel and decomposition approach to solve the medium- and low-voltage planning of large-scale power distribution systems. International Journal of Electrical Power and Energy Systems, 2021, 132, 107191.	5.5	5
143	A Microgrid Model With EV Demand Uncertainty and Detailed Operation of Storage Systems. IEEE Transactions on Industry Applications, 2022, 58, 2497-2511.	4.9	5
144	Control and protection of active distribution systems using a new multiobjective mathematical model. , 2017, , .		4

#	Article	IF	Citations
145	Dynamic Data Envelopment Analysis Model Involving Undesirable Outputs in the Electricity Power Generation Sector: The Case of Latin America and the Caribbean Countries. Energies, 2020, 13, 6624.	3.1	4
146	A Benders' Decomposition Approach for Renewable Generation Investment in Distribution Systems. Energies, 2020, 13, 1225.	3.1	4
147	Multiobjective Approach for Medium- and Low-Voltage Planning of Power Distribution Systems Considering Renewable Energy and Robustness. Energies, 2020, 13, 2517.	3.1	4
148	Short- and long-term Nash equilibria in electricity markets. , 2009, , .		3
149	Approaches to transmission planning: A transmission expansion game. , 2012, , .		3
150	A Principal-Agent Approach to Transmission Expansionâ€"Part II: Case Studies. IEEE Transactions on Power Systems, 2013, 28, 264-271.	6.5	3
151	Optimal Placement of Series Capacitive Compensation in Transmission Network Expansion Planning. Journal of Control, Automation and Electrical Systems, 2020, 31, 165-176.	2.0	3
152	Load Factor Assessment of the Electric Grid by the Optimal Scheduling of Electrical Equipment- A MIQCP Model. IEEE Open Access Journal of Power and Energy, 2021, 8, 433-447.	3.4	3
153	Corrigendum to "Optimal investment portfolio in renewable energy: The Spanish case―[Energy Policy 37(2009) 5273–5284]. Energy Policy, 2010, 38, 2608.	8.8	2
154	Optimal expansion model of renewable distributed generation in distribution systems. , 2014, , .		2
155	Impacts of network expansion on generation capacity expansion. , 2014, , .		2
156	Playing Pollution Games with Thermal Electricity Generators. Environmental Modeling and Assessment, 2018, 23, 639-651.	2.2	2
157	Distribution System Expansion Planning. Power Systems, 2018, , 1-39.	0.5	2
158	A bilevel model for maintenance scheduling of power units including wind farms. Electrical Engineering, 2019, 101, 477-487.	2.0	2
159	A Probability-Based Algorithm for Electric Vehicle Behaviour in a Microgrid with Renewable Energy and Storage Devices. , 2020, , .		2
160	Transmission Asset Investment in Electricity Markets. Journal of Energy Engineering - ASCE, 2009, 135, 55-63.	1.9	1
161	Static and Dynamic Convex Distribution Network Expansion Planning. Power Systems, 2018, , 41-63.	0.5	1
162	Short-Term Trading for a Concentrating Solar Power Producer in Electricity Markets., 2018,,.		1

#	Article	IF	Citations
163	Optimal Service Restoration in Active Distribution Networks Considering Microgrid Formation and Voltage Control Devices. , 2020, , .		1
164	Optimization-Based Distribution System Reliability Evaluation: An Enhanced MILP Model., 2021, , .		1
165	Finding Multiple Equilibria for Raiffa–Kalai–Smorodinsky and Nash Bargaining Equilibria in Electricity Markets: A Bilateral Contract Model. Designs, 2021, 5, 3.	2.4	1
166	Planning Long-Term Network Expansion in Electric Energy Systems in Multi-area Settings. Energy Systems, 2012, , 367-393.	0.5	1
167	Electric Distribution Network Planning Under Uncertainty. Energy Systems, 2020, , 293-323.	0.5	1
168	An Enhanced Algebraic Approach for the Analytical Reliability Assessment of Distribution Systems. , 2020, , .		1
169	Discussion of "A simulation model for a competitive generation market". IEEE Transactions on Power Systems, 2001, 16, 952-954.	6.5	O
170	Correction to "Auction design in day-ahead electricity markets". IEEE Transactions on Power Systems, 2002, 17, 522-522.	6.5	0
171	Formulation of incentives for decentralized transmission asset investments., 2009,,.		O
172	Contracts for recovery of investments in transmission assets. IET Generation, Transmission and Distribution, 2009, 3, 971-979.	2.5	0
173	A multiobjective model for distribution system planning based on tabu search. , 2013, , .		O
174	Optimal expansion planning in distribution networks with distributed generation. , 2014, , .		0
175	Effects of Transmission Congestion on Different Incentive Policies for Renewable Energy. Journal of Energy Engineering - ASCE, 2017, 143, 04016021.	1.9	0
176	Distributed Power Generation Scheduling, Modeling, and Expansion Planning. Energies, 2021, 14, 7757.	3.1	0
177	Resilience enhancement in the planning of medium-and low voltage power distribution systems with microgrid formation. , 2021, , .		0