Daniel Aslanian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890574/publications.pdf

Version: 2024-02-01

172457 123424 3,862 79 29 61 citations h-index g-index papers 86 86 86 3061 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new starting point for the South and Equatorial Atlantic Ocean. Earth-Science Reviews, 2010, 98, 1-37.	9.1	415
2	An alternative early opening scenario for the Central Atlantic Ocean. Earth and Planetary Science Letters, 2010, 297, 355-368.	4.4	239
3	Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000Âyr). Earth and Planetary Science Letters, 2006, 252, 119-137.	4.4	211
4	Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, 2009, 468, 98-112.	2.2	184
5	The "lost inca plateau― cause of flat subduction beneath peru?. Earth and Planetary Science Letters, 1999, 171, 335-341.	4.4	175
6	Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaÃ-Ango project). Geophysical Journal International, 2005, 162, 793-810.	2.4	170
7	Deep structure of the West African continental margin (Congo, Za \tilde{A} -re, Angola), between 5 \hat{A} °S and 8 \hat{A} °S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 2004, 158, 529-553.	2.4	162
8	Sedimentary sequences in the Gulf of Lion: A record of 100,000 years climatic cycles. Marine and Petroleum Geology, 2005, 22, 775-804.	3.3	162
9	Un nouveau point de départ pour l'histoire de l'Atlantique central. Comptes Rendus - Geoscience, 2004, 336, 1041-1052.	1.2	161
10	A twoâ€step process for the reflooding of the <scp>M</scp> editerranean after the <scp>M</scp> essinian <scp>S</scp> alinity <scp>C</scp> risis. Basin Research, 2012, 24, 125-153.	2.7	134
11	Axial incision: The key to understand submarine canyon evolution (in the western Gulf of Lion). Marine and Petroleum Geology, 2005, 22, 805-826.	3.3	131
12	Messinian erosional and salinity crises: View from the Provence Basin (Gulf of Lions, Western) Tj ETQq0 0 0 rgB	Oyerlock	2 10 Tf 50 302
13	Paleogeographic evolution of the central segment of the South Atlantic during Early Cretaceous times: Paleotopographic and geodynamic implications. Tectonophysics, 2013, 604, 191-223.	2.2	108
14	Evolution of rifted continental margins: The case of the Gulf of Lions (Western Mediterranean Basin). Earth and Planetary Science Letters, 2010, 292, 345-356.	4.4	85
15	Deep structure of the Santos Basinâ€São Paulo Plateau System, SE Brazil. Journal of Geophysical Research: Solid Earth, 2015, 120, 5401-5431.	3.4	71
16	New starting point for the Indian Ocean: Second phase of breakup for Gondwana. Earth-Science Reviews, 2019, 191, 26-56.	9.1	64
17	Large-scale chemical and thermal division of the Pacific mantle. Nature, 1999, 399, 345-350.	27.8	62
18	Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography. Earth and Planetary Science Letters, 2009, 286, 333-345.	4.4	58

#	Article	IF	CITATIONS
19	Crustal structure of the SW-Moroccan margin from wide-angle and reflection seismic data (the) Tj ETQq $1\ 1\ 0.784$	-314 rgBT 2.2	/Qyerlock 1
20	The crustal structure of the Central Mozambique continental margin — Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 2013, 599, 170-196.	2.2	55
21	Quantifying subsidence and isostatic readjustment using sedimentary paleomarkers, example from the Gulf of Lion. Earth and Planetary Science Letters, 2014, 388, 353-366.	4.4	42
22	Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology, 2015, 66, 262-277.	3.3	42
23	Imaging proto-oceanic crust off the Brazilian Continental Margin. Geophysical Journal International, 2014, 200, 471-488.	2.4	40
24	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin. Bulletin - Societie Geologique De France, 2015, 186, 309-330.	2.2	39
25	Kinematic keys of the Santos–Namibe basins. Geological Society Special Publication, 2013, 369, 91-107.	1.3	38
26	Evolution of the Pacific-Antarctic Ridge South of the Udintsev Fracture Zone. Science, 1997, 278, 1281-1284.	12.6	36
27	The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Marine Geology, 2011, 284, 158-174.	2.1	34
28	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – II. Sardinia's margin. Bulletin - Societie Geologique De France, 2015, 186, 331-351.	2.2	31
29	Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. Journal of Biogeography, 2021, 48, 492-510.	3.0	31
30	Stratigraphic simulations of the shelf of the Gulf of Lions: testing subsidence rates and seaâ€level curves during the Pliocene and Quaternary. Terra Nova, 2014, 26, 230-238.	2.1	30
31	Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data. Tectonophysics, 2016, 674, 227-252.	2.2	30
32	Mesozoic and Early Cenozoic sediment influx and morphology of the Mozambique Basin. Marine and Petroleum Geology, 2015, 66, 890-905.	3.3	29
33	Palaeogeographic consequences of conservational models in the South Atlantic Ocean. Geological Society Special Publication, 2013, 369, 75-90.	1.3	27
34	Gondwana breakup: Messages from the North Natal Valley. Terra Nova, 2020, 32, 205-214.	2.1	27
35	Chemical systematics of an intermediate spreading ridge: The Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2000, 105, 2915-2936.	3.3	26
36	Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil. Tectonophysics, 2016, 683, 286-307.	2.2	26

#	Article	IF	CITATIONS
37	Deep crustal structure of the Tuamotu plateau and Tahiti (French Polynesia) based on seismic refraction data. Geophysical Research Letters, 2002, 29, 1-1-1-4.	4.0	25
38	Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey). Tectonophysics, 2015, 656, 154-174.	2.2	25
39	Location of Louisville hotspot and origin of Hollister Ridge: geophysical constraints. Earth and Planetary Science Letters, 1998, 164, 31-40.	4.4	24
40	The Cenozoic tectonostratigraphic evolution of the Barracuda Ridge and Tiburon Rise, at the western end of the North America–South America plate boundary zone. Marine Geology, 2012, 303-306, 154-171.	2.1	24
41	Multi-approach quantification of denudation rates in the Gulf of Lion source-to-sink system (SE) Tj ETQq $1\ 1\ 0.78$	343] 4 rgB	T /Qyerlock 1
42	PLACA: a white box for plate reconstruction and best-fit pole determination. Computers and Geosciences, 2005, 31, 437-452.	4.2	23
43	Comment on $\hat{a} \in A$ new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin $\hat{a} \in A$ by Trond H. Torsvik, Sonia Rousse, Cinthia Labails and Mark A. Smethurst. Geophysical Journal International, 2010, 183, 20-28.	2.4	22
44	Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. Journal of South American Earth Sciences, 2018, 84, 351-372.	1.4	21
45	The Apennine foredeep (Italy) during the latest Messinian: Lago Mare reflects competing brackish and marine conditions based on calcareous nannofossils and dinoflagellate cysts. Geobios, 2017, 50, 237-257.	1.4	20
46	Analysis of propagators along the Pacific–Antarctic Ridge: evidence for triggering by kinematic changes. Earth and Planetary Science Letters, 2002, 199, 415-428.	4.4	19
47	The Minorca Basin: a buffer zone between the Valencia and Liguroâ€Provençal Basins (<scp>NW</scp>) Tj ETC	Qq1 _{2.1} 0.78	84314 rgBT /
48	Highâ€resolution evolution of terrigenous sediment yields in the Provence Basin during the last 6ÂMa: relation with climate and tectonics. Basin Research, 2017, 29, 305-339.	2.7	19
49	Sedimentary markers in the Provençal Basin (western Mediterranean): a window into deep geodynamic processes. Terra Nova, 2015, 27, 122-129.	2.1	17
50	Morphological reorganization within the Pacific-Antarctic Discordance. Earth and Planetary Science Letters, 1996, 137, 157-173.	4.4	15
51	Variations in axial morphology, segmentation, and seafloor roughness along the Pacific-Antarctic Ridge between 56°S and 66°S. Journal of Geophysical Research, 2001, 106, 8521-8546.	3.3	15
52	The late Messinian event: A worldwide tectonic revolution. Terra Nova, 2018, 30, 207-214.	2.1	15
53	The Messinian Ebro River incision. Global and Planetary Change, 2019, 181, 102988.	3.5	15
54	Lithospheric structuration onshore-offshore of the Sergipe-Alagoas passive margin, NE Brazil, based on wide-angle seismic data. Journal of South American Earth Sciences, 2018, 88, 649-672.	1.4	14

#	Article	IF	Citations
55	Major modification of sediment routing by a large Mass Transport Deposit in the Gulf of Lions (Western Mediterranean). Marine Geology, 2019, 411, 1-20.	2.1	14
56	Deep structure of the Pará-Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE) Tj ETQq0 0 0	rgBT/Ove	rlo၄ <u>k</u> 10 Tf 50
57	Deep Structure of the North Natal Valley (Mozambique) Using Combined Wideâ€Angle and Reflection Seismic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021171.	3.4	13
58	Early Eocene vigorous ocean overturning and its contribution to a warm Southern Ocean. Climate of the Past, 2020, 16, 1263-1283.	3.4	13
59	Deep-penetration heat flow probes raise questions about interpretations from shorter probes. Eos, 2001, 82, 317-317.	0.1	12
60	Structure and evolution of the Gulf of Lions: The Sardinia seismic experiment and the GOLD (Gulf of) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf
61	The Limpopo Magmaâ€Rich Transform Margin, South Mozambique: 1. Insights From Deepâ€Structure Seismic Imaging. Tectonics, 2021, 40, e2021TC006915.	2.8	10
62	Seismic evidence for crustal architecture and stratigraphy of the Limpopo Corridor: New insights into the evolution of the sheared margin offshore southern Mozambique. Marine Geology, 2021, 435, 106468.	2.1	9
63	Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley. Solid Earth, 2021, 12, 1865-1897.	2.8	9
64	Post-rift evolution of the Gulf of Lion margin tested by stratigraphic modelling. Bulletin - Societie Geologique De France, 2015, 186, 291-308.	2.2	8
65	Salt morphologies and crustal segmentation relationship: New insights from the Western Mediterranean Sea. Earth-Science Reviews, 2021, 222, 103818.	9.1	6
66	Imaging Early Oceanic Crust spreading in the Equatorial Atlantic Ocean: Insights from the MAGIC wide-angle experiment. Journal of South American Earth Sciences, 2021, 111, 103493.	1.4	6
67	Young Marquesas volcanism finally located. Lithos, 2017, 294-295, 356-361.	1.4	5
68	Asymmetry of the mantle structure beneath the Midâ€Atlantic Ridge. Geophysical Research Letters, 1992, 19, 1165-1168.	4.0	4
69	Corrigendum to: Paleo sea levels reconsidered from direct observation of paleoshoreline position during Glacial Maxima (for the last 500,000Âyears) [Earth Planet. Sci. Lett. 252 (2006), 119–137]. Earth and Planetary Science Letters, 2007, 254, 446-447.	4.4	4
70	Probing connections between deep earth and surface processes in a land-locked ocean basin transformed into a giant saline basin: The Mediterranean GOLD project#. Marine and Petroleum Geology, 2015, 66, 6-17.	3.3	4
71	Structural and sedimentary origin of the Gargano - Pelagosa gateway and impact on sedimentary evolution during the Messinian Salinity Crisis. Earth-Science Reviews, 2022, 232, 104114.	9.1	4
72	Slope morphologies offshore Dakhla (SW Moroccan margin). Bulletin - Societie Geologique De France, 2016, 187, 27-39.	2.2	3

#	Article	IF	CITATIONS
73	Comment on â€The challenge in restoring magma-rich rifted margins: The example of the Mozambique-Antarctica conjugate margins' by Tomasi S. et al Gondwana Research, 2022, 103, 401-403.	6.0	3
74	From Rifting to Spreading: The Proto-Oceanic Crust. Advances in Science, Technology and Innovation, 2019, , 329-331.	0.4	1
75	Passive Margin and Continental Basin: Towards a New Paradigm. Advances in Science, Technology and Innovation, 2019, , 333-336.	0.4	1
76	A New Starting point for the history of South and Equatorial Atlantic Oceans. , 2007, , .		1
77	Brazilian and Angolan Passive Margins: the kinematic constraints. , 2007, , .		0
78	Using Sedimentary Markers to Evaluate Subsidence Rates: A Case study in the Gulf of Lion. , 2007, , .		0
79	Structure of the Central Atlantic Conjugate Passive Margins and their Associated Sedimentary Basins. , 2016, , .		0