
## Wei Jiang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890567/publications.pdf Version: 2024-02-01



WELLANC

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Collisionless Bounce Resonance Heating in Dual-Frequency Capacitively Coupled Plasmas. Physical<br>Review Letters, 2011, 107, 055002.                                                                                               | 7.8 | 101       |
| 2  | Implicit and electrostatic particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric<br>geometry: I. Analysis of numerical techniques. Plasma Sources Science and Technology, 2010, 19,<br>045023.                     | 3.1 | 74        |
| 3  | Heating mechanisms and particle flow balancing of capacitively coupled plasmas driven by combined dc/rf sources. Physics of Plasmas, 2008, 15, .                                                                                    | 1.9 | 58        |
| 4  | Implicit and electrostatic particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric geometry: II. Self-bias voltage effects in capacitively coupled plasmas. Plasma Sources Science and Technology, 2011, 20, 035013. | 3.1 | 53        |
| 5  | Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 2015, 17, 083056.                                                     | 2.9 | 44        |
| 6  | Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge. Journal of Applied Physics, 2011, 109, 013308.                                                                | 2.5 | 41        |
| 7  | A brief review of dual-frequency capacitively coupled discharges. Current Applied Physics, 2011, 11, S2-S8.                                                                                                                         | 2.4 | 35        |
| 8  | Magnetical asymmetry effect in capacitively coupled plasmas: effects of the magnetic field gradient, pressure, and gap length. Plasma Sources Science and Technology, 2018, 27, 035008.                                             | 3.1 | 34        |
| 9  | Magnetical asymmetric effect in geometrically and electrically symmetric capacitively coupled plasma.<br>Plasma Processes and Polymers, 2017, 14, 1700087.                                                                          | 3.0 | 32        |
| 10 | Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas. Journal Physics D: Applied Physics, 2012, 45, 305203.                                                                        | 2.8 | 30        |
| 11 | Electrical breakdown in dual-frequency capacitively coupled plasma: a collective simulation. Plasma<br>Sources Science and Technology, 2021, 30, 065029.                                                                            | 3.1 | 27        |
| 12 | A time-dependent analytical sheath model for dual-frequency capacitively coupled plasma. Physics of Plasmas, 2006, 13, 113502.                                                                                                      | 1.9 | 25        |
| 13 | Numerical characterization of magnetized capacitively coupled argon plasmas driven by combined dc/rf sources. Physics of Plasmas, 2017, 24, .                                                                                       | 1.9 | 22        |
| 14 | Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure.<br>Journal Physics D: Applied Physics, 2014, 47, 435201.                                                                              | 2.8 | 19        |
| 15 | Electrical asymmetry effects in magnetized capacitively coupled plasmas in argon. Plasma Sources<br>Science and Technology, 2017, 26, 065011.                                                                                       | 3.1 | 19        |
| 16 | On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation: Benchmark and application to the radio frequency discharges. Chinese Physics B, 2014, 23, 035204.                                                 | 1.4 | 18        |
| 17 | Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions. Nuclear Fusion, 2016, 56, 126017.                                                                                                | 3.5 | 18        |
| 18 | Implicit electrostatic particle-in-cell/Monte Carlo simulation for the magnetized plasma: Algorithms and application in gas-inductive breakdown. Chinese Physics B, 2015, 24, 065207.                                               | 1.4 | 16        |

Wei Jiang

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impact of different packing beads methods for streamer generation and propagation in packed-bed<br>dielectric barrier discharge. Journal Physics D: Applied Physics, 2020, 53, 185202. | 2.8 | 16        |
| 20 | Particle-in-cell and Monte Carlo collision simulations of the cathode sheath in an atmospheric direct-current arc discharge. Plasma Sources Science and Technology, 2016, 25, 05LT01.  | 3.1 | 14        |
| 21 | Quantum hydrodynamic modeling of edge modes in chiral Berry plasmons. Physical Review B, 2017, 96, .                                                                                   | 3.2 | 14        |
| 22 | Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model.<br>Physical Review B, 2018, 97, .                                                         | 3.2 | 14        |
| 23 | On the breakdown modes and parameter space of ohmic tokamak start-up. Journal of Plasma Physics, 2018, 84, .                                                                           | 2.1 | 14        |
| 24 | Enhancement of surface discharge in catalyst pores in dielectric barrier discharges. Journal of<br>Applied Physics, 2019, 125, .                                                       | 2.5 | 14        |
| 25 | Surface-charging effect of capacitively coupled plasmas driven by combined dc/rf sources. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2010, 28, 287-292.   | 2.1 | 13        |
| 26 | Kinetic analysis of direct-current driven microdischarges with thermo-field electron emission at atmospheric pressure. Journal Physics D: Applied Physics, 2020, 53, 455201.           | 2.8 | 13        |
| 27 | Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors. New Journal of Physics, 2014, 16, 113036.                                       | 2.9 | 12        |
| 28 | Electron energy probability function modulation with external electron beam in capacitive coupled radio frequency discharges. Plasma Processes and Polymers, 2018, 15, 1700169.        | 3.0 | 10        |
| 29 | Electron kinetics in capacitively coupled plasmas modulated by electron injection. Journal of Applied Physics, 2017, 122, .                                                            | 2.5 | 9         |
| 30 | Self-consistent simulation of the impedance matching network for single frequency capacitively coupled plasma. Journal Physics D: Applied Physics, 2022, 55, 165201.                   | 2.8 | 9         |
| 31 | Stopping power of two-dimensional spin quantum electron gases. Nuclear Instruments & Methods in Physics Research B, 2015, 349, 72-78.                                                  | 1.4 | 7         |
| 32 | Numerical characterization of plasma breakdown in reversed field pinches. Nuclear Fusion, 2018, 58,<br>026007.                                                                         | 3.5 | 7         |
| 33 | Pseudomagnetic field modulation of stopping power for a charged particle moving above graphene.<br>Physics of Plasmas, 2018, 25, .                                                     | 1.9 | 7         |
| 34 | Computational characterization of electron-beam-sustained plasma. Physics of Plasmas, 2019, 26, .                                                                                      | 1.9 | 7         |
| 35 | Computational analysis of direct current breakdown process in SF6 at low pressure. Journal Physics<br>D: Applied Physics, 2021, 54, 445201.                                            | 2.8 | 7         |
| 36 | Numerical characterization of breakdown process of dc-driven micro-discharge sustained by thermionic emission. Journal Physics D: Applied Physics, 0, , .                              | 2.8 | 7         |

Wei Jiang

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The effects of match circuit on the breakdown process of capacitively coupled plasma driven by radio frequency. Journal of Applied Physics, 2022, 131, 153301.                     | 2.5 | 6         |
| 38 | Implicit Temporal Discretization and Exact Energy Conservation for Particle Methods Applied to the Poisson–Boltzmann Equation. Plasma, 2018, 1, 242-258.                           | 1.8 | 5         |
| 39 | How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: a kinetic modeling study. Plasma Science and Technology, 2020, 22, 034013. | 1.5 | 5         |
| 40 | Discharge Enhancement Phenomenon and Streamer Control in Dielectric Barrier Discharge with Many<br>Pores. Catalysts, 2020, 10, 68.                                                 | 3.5 | 5         |
| 41 | On the breakdown process of capacitively coupled plasma in carbon tetrafluoride. Journal Physics D:<br>Applied Physics, 2022, 55, 255203.                                          | 2.8 | 5         |
| 42 | Enhancement of valley polarization in graphene with an irradiating charged particle. Physics of Plasmas, 2019, 26, 012102.                                                         | 1.9 | 4         |
| 43 | Note on the energy transport in capacitively coupled plasmas. Plasma Sources Science and Technology, 2022, 31, 047001.                                                             | 3.1 | 4         |
| 44 | Computational study of microdischarges driven by electron beam injection with particle-in-cell/Monte Carlo collision simulations. Journal of Applied Physics, 2022, 131, .         | 2.5 | 4         |
| 45 | Effect of Stern-Gerlach force on negative magnetoresistance and Hall resistance in spin-dependent viscous flow. Physical Review B, 2020, 102, .                                    | 3.2 | 3         |
| 46 | High-frequency magnetotransport in a viscous electron fluid under a Stern-Gerlach force. Physical<br>Review B, 2021, 104, .                                                        | 3.2 | 3         |
| 47 | Two-dimensional electromagnetic quantum-hydrodynamic simulations of isochoric heating of a solid target by proton beams. Physics of Plasmas, 2015, 22, 022701.                     | 1.9 | 2         |
| 48 | The influence of weak transverse magnetic field on plasma dissipation process in the post-arc phase in a vacuum interrupter. Plasma Science and Technology, 0, , .                 | 1.5 | 1         |
| 49 | Numerical characterization of capacitively coupled plasmas modulated by ion beam injection. Plasma<br>Sources Science and Technology, 2022, 31, 045028.                            | 3.1 | 1         |
| 50 | Plasma density evolution in plasma opening switch obtained by a time-resolved sensitive He-Ne interferometer. Science China: Physics, Mechanics and Astronomy, 2014, 57, 442-446.  | 5.1 | 0         |
| 51 | Influence Of Duty Cycle On Pulse Modulated Rf Capacitively-Coupled Argon Discharge. , 2017, , .                                                                                    |     | 0         |
| 52 | Stopping Power Modulation by Pump Waves of Charged Particles Moving above Two-Dimensional Electron Gases. Laser and Particle Beams, 2021, 2021, .                                  | 1.0 | 0         |
| 53 | BCS-BEC crossover of ultracold ions driven by density-dependent short-range interactions in a quantum plasma. Physical Review A, 2021, 104, .                                      | 2.5 | 0         |
| 54 | Effect of Viscosity on Stopping Power for a Charged Particle Moving above Two-Dimensional Electron<br>Gas. Laser and Particle Beams, 2022, 2022, .                                 | 1.0 | 0         |