Mitsuharu Chisaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Twofold Effects of Zirconium Doping into TiN on Durability and Oxygen Reduction Reactivity in an Acidic Environment. Energy & Fuels, 2022, 36, 539-547.	5.1	2
2	Inexpensive gram scale synthesis of porous Ti ₄ O ₇ for high performance polymer electrolyte fuel cell electrodes. Chemical Communications, 2021, 57, 12772-12775.	4.1	5
3	Efficient Phosphorus Doping into the Surface Oxide Layers on TiN to Enhance Oxygen Reduction Reaction Activity in Acidic Media. ACS Applied Energy Materials, 2020, 3, 9866-9876.	5.1	7
4	Phosphor and nitrogen co-doped rutile TiO ₂ covered on TiN for oxygen reduction reaction in acidic media. Catalysis Science and Technology, 2019, 9, 611-619.	4.1	14
5	Creation of oxygen reduction reaction active sites on titanium oxynitride without increasing the nitrogen doping level. Physical Chemistry Chemical Physics, 2018, 20, 15613-15617.	2.8	18
6	Active Site Formation for Oxygen Reduction Reaction on Carbon-Support-Free Titanium Oxynitride with Boosted Activity in Acidic Media. ACS Applied Energy Materials, 2018, 1, 211-219.	5.1	15
7	Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes. ACS Omega, 2017, 2, 678-684.	3.5	49
8	A Carbon-Support-Free Titanium Oxynitride Catalyst for Proton Exchange Membrane Fuel Cell Cathodes. Electrochimica Acta, 2016, 214, 165-172.	5.2	27
9	Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine. Electrochimica Acta, 2016, 201, 279-285.	5.2	12
10	Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells. Catalysts, 2015, 5, 1289-1303.	3.5	20
11	Facile Combustion Synthesis of Carbon-Supported Titanium Oxynitride to Catalyse Oxygen Reduction Reaction in Acidic Media. Electrochimica Acta, 2015, 183, 100-106.	5.2	20
12	Reduced Grapheneâ€Oxideâ€Supported Titanium Oxynitride as Oxygen Reduction Reaction Catalyst in Acid Media. ChemElectroChem, 2014, 1, 544-548.	3.4	12
13	Aluminumâ€Doped Hafnium Oxynitride: Effect of Cation Doping on Oxygenâ€Reductionâ€Reaction Activity in Acid Media. ChemElectroChem, 2014, 1, 863-867.	3.4	10
14	Evaluation of "Intrinsic" Oxygen Reduction Reaction Selectivity on Carbon-Supported Hafnium Oxynitride Catalysts. ECS Meeting Abstracts, 2014, , .	0.0	0
15	Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochimica Acta, 2013, 113, 735-740.	5.2	36
16	Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media. Electrochimica Acta, 2013, 88, 697-707.	5.2	42
17	Carbon catalyst codoped with boron and nitrogen for oxygen reduction reaction in acid media. Electrochimica Acta, 2012, 85, 399-410.	5.2	23
18	Effect of Synthesis Route on Oxygen Reduction Reaction Activity of Carbon-Supported Hafnium Oxynitride in Acid Media. Journal of Physical Chemistry C, 2011, 115, 20610-20617.	3.1	36

MITSUHARU CHISAKA

#	Article	IF	CITATIONS
19	Carbon-supported hafnium oxynitride as cathode catalyst for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2011, 56, 4581-4588.	5.2	38
20	Oxygen Reduction Reaction Activity of Vulcan XC-72 Doped with Nitrogen under NH[sub 3] Gas in Acid Media. Journal of the Electrochemical Society, 2010, 157, B1701.	2.9	24
21	Effect of Organic Solvents on the Pore Structure of Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2010, 157, B1218.	2.9	22
22	Effect of Organic Solvents on Catalyst Layer Structure in Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B22.	2.9	19
23	Design of ordered-catalyst layers for polymer electrolyte membrane fuel cell cathodes. Electrochemistry Communications, 2006, 8, 1304-1308.	4.7	25
24	Effect of glycerol on micro/nano structures of catalyst layers in polymer electrolyte membrane fuel cells. Electrochimica Acta, 2006, 51, 4828-4833.	5.2	46