Rossana Henriques

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sugars and the speed of life—Metabolic signals that determine plant growth, development and death. Physiologia Plantarum, 2022, 174, e13656.	5.2	28
2	Growing at the right time: interconnecting the TOR pathway with photoperiod and circadian regulation. Journal of Experimental Botany, 2022, 73, 7006-7015.	4.8	3
3	The photoperiodic response of hypocotyl elongation involves regulation of CDF1 and CDF5 activity. Physiologia Plantarum, 2020, 169, 480-490.	5.2	18
4	Literature review of baseline information on nonâ€coding RNA (ncRNA) to support the risk assessment of ncRNAâ€based genetically modified plants for food and feed. EFSA Supporting Publications, 2019, 16, 1688E.	0.7	31
5	Circadian Waves of Transcriptional Repression Shape PIF-Regulated Photoperiod-Responsive Growth in Arabidopsis. Current Biology, 2018, 28, 311-318.e5.	3.9	93
6	Under a New Light: Regulation of Light-Dependent Pathways by Non-coding RNAs. Frontiers in Plant Science, 2018, 9, 962.	3.6	28
7	The antiphasic regulatory module comprising <i>CDF5</i> and its antisense <scp>RNA </scp> <i>FLORE</i> links the circadian clock to photoperiodic flowering. New Phytologist, 2017, 216, 854-867.	7.3	112
8	Assessing Protein Stability Under Different Light and Circadian Conditions. Methods in Molecular Biology, 2016, 1398, 141-152.	0.9	2
9	Balancing act: matching growth with environment by the TOR signalling pathway. Journal of Experimental Botany, 2014, 65, 2691-2701.	4.8	64
10	Plant Circadian Network. , 2014, , 333-381.		0
11	Chromatin remodeling and alternative splicing: Pre- and post-transcriptional regulation of the Arabidopsis circadian clock. Seminars in Cell and Developmental Biology, 2013, 24, 399-406.	5.0	36
12	TOR tour to auxin. EMBO Journal, 2013, 32, 1069-1071.	7.8	29
13	Three Transcription Factors, HFR1, LAF1 and HY5, Regulate Largely Independent Signaling Pathways Downstream of Phytochrome A. Plant and Cell Physiology, 2013, 54, 907-916.	3.1	45
14	S6K1 and E2FB are in mutually antagonistic regulatory links controlling cell growth and proliferation in <i><i>Arabidopsis</i></i> . Plant Signaling and Behavior, 2013, 8, e24367.	2.4	17
15	Circadian Clock Regulates Dynamic Chromatin Modifications Associated with Arabidopsis CCA1/LHY and TOC1 Transcriptional Rhythms. Plant and Cell Physiology, 2012, 53, 2016-2029.	3.1	49
16	<i>Arabidopsis</i> E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. EMBO Journal, 2012, 31, 1480-1493.	7.8	142
17	Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1–E2F pathway activity. EMBO Journal, 2010, 29, 2979-2993.	7.8	98
18	F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control <i>Arabidopsis</i> Clock Progression Â. Plant Cell, 2010, 22, 606-622.	6.6	220

ROSSANA HENRIQUES

#	Article	IF	CITATIONS
19	PSEUDO-RESPONSE REGULATORS 9, 7, and 5 Are Transcriptional Repressors in the <i>Arabidopsis</i> Circadian Clock Â. Plant Cell, 2010, 22, 594-605.	6.6	507
20	<i>Arabidopsis</i> PHYTOCHROME INTERACTING FACTOR Proteins Promote Phytochrome B Polyubiquitination by COP1 E3 Ligase in the Nucleus Â. Plant Cell, 2010, 22, 2370-2383.	6.6	201
21	FAR-RED ELONGATED HYPOCOTYL1 and FHY1-LIKE Associate with the <i>Arabidopsis</i> Transcription Factors LAF1 and HFR1 to Transmit Phytochrome A Signals for Inhibition of Hypocotyl Elongation Â. Plant Cell, 2009, 21, 1341-1359.	6.6	89
22	Regulated proteolysis in light-related signaling pathways. Current Opinion in Plant Biology, 2009, 12, 49-56.	7.1	74
23	Targeted Degradation of PSEUDO-RESPONSE REGULATOR5 by an SCF ^{ZTL} Complex Regulates Clock Function and Photomorphogenesis in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 2516-2530.	6.6	223
24	Strategies and mechanisms of plant virus resistance. Plant Biotechnology Reports, 2007, 1, 125-134.	1.5	42
25	Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols, 2006, 1, 641-646.	12.0	1,758
26	A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO Journal, 2004, 23, 572-581.	7.8	285
27	Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends in Plant Science, 2003, 8, 424-431.	8.8	175
28	Rapid identification ofArabidopsisinsertion mutants by non-radioactive detection of T-DNA tagged genes. Plant Journal, 2002, 32, 243-253.	5.7	82
29	Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Molecular Biology, 2002, 50, 587-597.	3.9	229