
Catherine A Gehring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host identity and neighborhood trees affect belowground microbial communities in a tropical rainforest. Tropical Ecology, 2022, 63, 216-228.	1.2	3
2	The effect of natural disturbances on forest biodiversity: an ecological synthesis. Biological Reviews, 2022, 97, 1930-1947.	10.4	40
3	Adaptive trait syndromes along multiple economic spectra define cold and warm adapted ecotypes in a widely distributed foundation tree species. Journal of Ecology, 2021, 109, 1298-1318.	4.0	18
4	UAV thermal image detects genetic trait differences among populations and genotypes of Fremont cottonwood (Populus fremontii , Salicaceae). Remote Sensing in Ecology and Conservation, 2021, 7, 245-258.	4.3	5
5	Continent-wide tree fecundity driven by indirect climate effects. Nature Communications, 2021, 12, 1242.	12.8	46
6	Is there tree senescence? The fecundity evidence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	42
7	Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores. Ecology, 2021, 102, e03461.	3.2	7
8	Repeated Genetic and Adaptive Phenotypic Divergence across Tidal Elevation in a Foundation Plant Species. American Naturalist, 2021, 198, E152-E169.	2.1	13
9	Ectomycorrhizal and Dark Septate Fungal Associations of Pinyon Pine Are Differentially Affected by Experimental Drought and Warming. Frontiers in Plant Science, 2020, 11, 582574.	3.6	20
10	Adaptive capacity in the foundation tree species Populus fremontii: implications for resilience to climate change and non-native species invasion in the American Southwest. , 2020, 8, coaa061.		20
11	Plant response to fungal root endophytes varies by host genotype in the foundation species <i>Spartina alterniflora</i> . American Journal of Botany, 2020, 107, 1645-1653.	1.7	13
12	Persistent effects of fire severity on ponderosa pine regeneration niches and seedling growth. Forest Ecology and Management, 2020, 477, 118502.	3.2	14
13	Familiar soil conditions help <scp><i>Pinus ponderosa</i></scp> seedlings cope with warming and drying climate. Restoration Ecology, 2020, 28, S344.	2.9	15
14	Common garden experiments disentangle plant genetic and environmental contributions to ectomycorrhizal fungal community structure. New Phytologist, 2019, 221, 493-502.	7.3	40
15	Reconciling disparate responses to grazing in the arbuscular mycorrhizal symbiosis. Rhizosphere, 2019, 11, 100167.	3.0	21
16	Large, high-severity burn patches limit fungal recovery 13 years after wildfire in a ponderosa pine forest. Soil Biology and Biochemistry, 2019, 139, 107616.	8.8	23
17	Legacy effects of tree mortality mediated by ectomycorrhizal fungal communities. New Phytologist, 2019, 224, 155-165.	7.3	21
18	Long-Term Studies Reveal Differential Responses to Climate Change for Trees Under Soil- or Herbivore-Related Stress, Frontiers in Plant Science, 2019, 10, 132	3.6	9

#	Article	IF	CITATIONS
19	Pine Seeds Carry Symbionts: Endophyte Transmission Re-examined. , 2019, , 335-361.		3
20	Beyond ICOM8: perspectives on advances in mycorrhizal research from 2015 to 2017. Mycorrhiza, 2018, 28, 197-201.	2.8	4
21	Accounting for local adaptation in ectomycorrhizas: a call to track geographical origin of plants, fungi, and soils in experiments. Mycorrhiza, 2018, 28, 187-195.	2.8	9
22	Tree species with limited geographical ranges show extreme responses to ectomycorrhizas. Global Ecology and Biogeography, 2018, 27, 839-848.	5.8	16
23	Genetic-Based Susceptibility of a Foundation Tree to Herbivory Interacts With Climate to Influence Arthropod Community Composition, Diversity, and Resilience. Frontiers in Plant Science, 2018, 9, 1831.	3.6	11
24	Higher Temperature at Lower Elevation Sites Fails to Promote Acclimation or Adaptation to Heat Stress During Pollen Germination. Frontiers in Plant Science, 2018, 9, 536.	3.6	20
25	Tree genetics defines fungal partner communities that may confer drought tolerance. Proceedings of the United States of America, 2017, 114, 11169-11174.	7.1	203
26	Mycorrhizae, invasions, and the temporal dynamics of mutualism disruption. Journal of Ecology, 2017, 105, 1496-1508.	4.0	56
27	Arthropod communities on hybrid and parental cottonwoods are phylogenetically structured by tree type: Implications for conservation of biodiversity in plant hybrid zones. Ecology and Evolution, 2017, 7, 5909-5921.	1.9	7
28	Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi. Mycorrhiza, 2017, 27, 211-223.	2.8	31
29	Local biotic adaptation of trees and shrubs to plant neighbors. Oikos, 2017, 126, 583-593.	2.7	20
30	The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology, 2016, 30, 1086-1098.	3.6	184
31	Home-field advantage? evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evolutionary Biology, 2016, 16, 122.	3.2	148
32	Mapping the potential mycorrhizal associations of the conterminous United States of America. Fungal Ecology, 2016, 24, 139-147.	1.6	27
33	Cheatgrass invasion alters the abundance and composition of dark septate fungal communities in sagebrush steppe. Botany, 2016, 94, 481-491.	1.0	11
34	A robust method to determine historical annual cone production among slow-growing conifers. Forest Ecology and Management, 2016, 368, 1-6.	3.2	13
35	Tree genotype mediates covariance among communities from microbes to lichens and arthropods. Journal of Ecology, 2015, 103, 840-850.	4.0	59
36	Species Introductions and Their Cascading Impacts on Biotic Interactions in desert riparian ecosystems. Integrative and Comparative Biology, 2015, 55, 587-601.	2.0	17

#	Article	IF	CITATIONS
37	Introduced elk alter traits of a native plant and its plant-associated arthropod community. Acta Oecologica, 2015, 67, 8-16.	1.1	5
38	Geneticsâ€based interactions among plants, pathogens, and herbivores define arthropod community structure. Ecology, 2015, 96, 1974-1984.	3.2	33
39	Plant genetic identity of foundation tree species and their hybrids affects a litter-dwelling generalist predator. Oecologia, 2014, 176, 799-810.	2.0	3
40	Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants. Frontiers in Microbiology, 2014, 5, 306.	3.5	43
41	Hybridization in Populus alters the species composition and interactions of root-colonizing fungi: consequences for host plant performance. Botany, 2014, 92, 287-293.	1.0	8
42	Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change. Molecular Ecology, 2014, 23, 1379-1391.	3.9	58
43	Plant genetic effects on soils under climate change. Plant and Soil, 2014, 379, 1-19.	3.7	52
44	Tree genotype and genetically based growth traits structure twig endophyte communities. American Journal of Botany, 2014, 101, 467-478.	1.7	52
45	An elusive ectomycorrhizal fungus reveals itself: a new species of Geopora (Pyronemataceae) associated with Pinus edulis. Mycologia, 2014, 106, 553-563.	1.9	18
46	Consequences for ectomycorrhizal fungi of the selective loss or gain of pine across landscapes. Botany, 2014, 92, 855-865.	1.0	21
47	Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends in Ecology and Evolution, 2014, 29, 406-416.	8.7	71
48	Microsatellite Primers in the Foundation Tree Species Pinus edulis and P. monophylla (Pinaceae). Applications in Plant Sciences, 2013, 1, 1200552.	2.1	2
49	Stand-replacing wildfires alter the community structure of wood-inhabiting fungi in southwestern ponderosa pine forests of the USA. Fungal Ecology, 2013, 6, 192-204.	1.6	17
50	Sexual stability in the nearly dioecious <i>Pinus johannis</i> (Pinaceae). American Journal of Botany, 2013, 100, 602-612.	1.7	27
51	Patterns of diversity and adaptation in Glomeromycota from three prairie grasslands. Molecular Ecology, 2013, 22, 2573-2587.	3.9	46
52	Exotic cheatgrass and loss of soil biota decrease the performance of a native grass. Biological Invasions, 2013, 15, 2503-2517.	2.4	27
53	Community specificity: life and afterlife effects of genes. Trends in Plant Science, 2012, 17, 271-281.	8.8	135
54	Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecological Applications, 2012, 22, 532-549.	3.8	84

#	Article	IF	CITATIONS
55	Terrestrial vertebrates alter seedling composition and richness but not diversity in an Australian tropical rain forest. Ecology, 2011, 92, 1637-1647.	3.2	25
56	Molecular characterization of pezizalean ectomycorrhizas associated with pinyon pine during drought. Mycorrhiza, 2011, 21, 431-441.	2.8	36
57	Rehabilitating Downy Brome (<i>Bromus tectorum</i>)–Invaded Shrublands Using Imazapic and Seeding with Native Shrubs. Invasive Plant Science and Management, 2011, 4, 223-233.	1.1	29
58	Ungulate and topographic control of arbuscular mycorrhizal fungal spore community composition in a temperate grassland. Ecology, 2010, 91, 815-827.	3.2	53
59	Drought negatively affects communities on a foundation tree: growth rings predict diversity. Oecologia, 2010, 164, 751-761.	2.0	29
60	Interwoven branches of the plant and fungal trees of life. New Phytologist, 2010, 185, 874-878.	7.3	29
61	A metaâ€analysis of contextâ€dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13, 394-407.	6.4	889
62	Deadly combination of genes and drought: increased mortality of herbivoreâ€resistant trees in a foundation species. Global Change Biology, 2009, 15, 1949-1961.	9.5	77
63	Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. New Phytologist, 2009, 184, 657-667.	7.3	77
64	Above- and belowground responses to tree thinning depend on the treatment of tree debris. Forest Ecology and Management, 2009, 259, 71-80.	3.2	49
65	Mycorrhizal Fungal–Plant–Insect Interactions: The Importance of a Community Approach. Environmental Entomology, 2009, 38, 93-102.	1.4	200
66	Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza, 2008, 18, 363-374.	2.8	49
67	Restoration of a ponderosa pine forest increases soil CO ₂ efflux more than either water or nitrogen additions. Journal of Applied Ecology, 2008, 45, 913-920.	4.0	24
68	SOIL RESPONSES TO MANAGEMENT, INCREASED PRECIPITATION, AND ADDED NITROGEN IN PONDEROSA PINE FORESTS. , 2007, 17, 1352-1365.		33
69	Shifts from competition to facilitation between a foundation tree and a pioneer shrub across spatial and temporal scales in a semiarid woodland. New Phytologist, 2007, 173, 135-145.	7.3	156
70	From Lilliput to Brobdingnag: Extending Models of Mycorrhizal Function across Scales. BioScience, 2006, 56, 889.	4.9	70
71	The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecology Letters, 2006, 9, 501-515.	6.4	285
72	Belowâ€ground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytologist, 2006, 171, 171-178.	7.3	46

#	Article	IF	CITATIONS
73	Interactions between an above-ground plant parasite and below-ground ectomycorrhizal fungal communities on pinyon pine. Journal of Ecology, 2006, 94, 276-284.	4.0	33
74	A framework for community and ecosystem genetics: from genes to ecosystems. Nature Reviews Genetics, 2006, 7, 510-523.	16.3	911
75	Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza, 2006, 16, 89-98.	2.8	35
76	Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia, 2006, 149, 158-164.	2.0	140
77	Differential tree mortality in response to severe drought: evidence for long-term vegetation shifts. Journal of Ecology, 2005, 93, 1085-1093.	4.0	437
78	Chronic herbivory negatively impacts cone and seed production, seed quality and seedling growth of susceptible pinyon pines. Oecologia, 2005, 143, 558-565.	2.0	34
79	Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils. Oecologia, 2005, 145, 123-131.	2.0	30
80	Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Canadian Journal of Botany, 2005, 83, 356-361.	1.1	119
81	The relationship between stem-galling wasps and mycorrhizal colonization of Quercus turbinella. Canadian Journal of Botany, 2005, 83, 1349-1353.	1.1	19
82	INTERACTIONS WITH JUNIPER ALTER PINYON PINE ECTOMYCORRHIZAL FUNGAL COMMUNITIES. Ecology, 2004, 85, 2687-2692.	3.2	35
83	ECTOMYCORRHIZAL ABUNDANCE AND COMMUNITY COMPOSITION SHIFTS WITH DROUGHT: PREDICTIONS FROM TREE RINGS. Ecology, 2004, 85, 1072-1084.	3.2	121
84	Long-term effects of burning slash on plant communities and arbuscular mycorrhizae in a semi-arid woodland. Journal of Applied Ecology, 2004, 41, 379-388.	4.0	52
85	Seed reserves and light intensity affect the growth and mycorrhiza development of the seedlings of an Australian rain-forest tree. Journal of Tropical Ecology, 2004, 20, 345-349.	1.1	14
86	Title is missing!. Plant Ecology, 2003, 167, 127-139.	1.6	57
87	Soil community composition and the regulation of grazed temperate grassland. Oecologia, 2003, 137, 603-609.	2.0	63
88	COMMUNITY AND ECOSYSTEM GENETICS: A CONSEQUENCE OF THE EXTENDED PHENOTYPE. Ecology, 2003, 84, 559-573.	3.2	594
89	Mycorrhizae-Herbivore Interactions: Population and Community Consequences. Ecological Studies, 2002, , 295-320.	1.2	148
90	Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil. Ecology Letters, 2002, 5, 540-548.	6.4	55

#	Article	IF	CITATIONS
91	Complex Species Interactions and the Dynamics of Ecological Systems: Long-Term Experiments. Science, 2001, 293, 643-650.	12.6	325
92	Effects of a litter-disturbing bird species on tree seedling germination and survival in an Australian tropical rain forest. Journal of Tropical Ecology, 1999, 15, 737-749.	1.1	31
93	Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytologist, 1998, 139, 733-739.	7.3	85
94	ECTOMYCORRHIZAL FUNGAL COMMUNITY STRUCTURE OF PINYON PINES GROWING IN TWO ENVIRONMENTAL EXTREMES. Ecology, 1998, 79, 1562-1572.	3.2	182
95	Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels. Oecologia, 1997, 109, 389-397.	2.0	105
96	Duration of Herbivore Removal and Environmental Stress Affect the Ectomycorrhizae of Pinyon Pines. Ecology, 1995, 76, 2118-2123.	3.2	54
97	C <scp>omparisons of ectomycorrhizae on pinyon pines</scp> (<i>P<scp>inus edulis</scp></i> ;) Tj ETQq1 1 0.78 Botany, 1994, 81, 1509-1516.	34314 rgB ⁻ 1.7	「 /Overlock] 75
98	Interactions between aboveground herbivores and the mycorrhizal mutualists of plants. Trends in Ecology and Evolution, 1994, 9, 251-255.	8.7	189
99	Comparisons of Ectomycorrhizae on Pinyon Pines (Pinus edulis; Pinaceae) Across Extremes of Soil Type and Herbivory. American Journal of Botany, 1994, 81, 1509.	1.7	45
100	Negative Effects of Scale Insect Herbivory on the Ectomycorrhizae of Juvenile Pinyon Pine. Ecology, 1993, 74, 2297-2302.	3.2	48
101	Reduced mycorrhizae on Juniperus monosperma with mistletoe: the influence of environmental stress and tree gender on a plant parasite and a plant-fungal mutualism. Oecologia, 1992, 89, 298-303.	2.0	83
102	Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature, 1991, 353, 556-557.	27.8	138