Véronique Aguié-Béghin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6890267/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nafion membranes reinforced by cellulose nanocrystals for fuel cell applications: aspect ratio and heat treatment effects on physical properties. Journal of Materials Science, 2022, 57, 4684-4703.	1.7	10
2	Radiation-induced graft polymerization of N-isopropyl acrylamide onto microcrystalline cellulose: Assessing the efficiency of the peroxidation method. Radiation Physics and Chemistry, 2022, 194, 110038.	1.4	6
3	Tuning the functional properties of lignocellulosic films by controlling the molecular and supramolecular structure of lignin. International Journal of Biological Macromolecules, 2021, 181, 136-149.	3.6	20
4	Atomic force microscopy reveals how relative humidity impacts the Young's modulus of lignocellulosic polymers and their adhesion with cellulose nanocrystals at the nanoscale. International Journal of Biological Macromolecules, 2020, 147, 1064-1075.	3.6	27
5	Influence of the polarity of the matrix on the breakage mechanisms of lignocellulosic fibers during twinâ€screw extrusion. Polymer Composites, 2020, 41, 1106-1117.	2.3	18
6	Dual Antioxidant Properties and Organic Radical Stabilization in Cellulose Nanocomposite Films Functionalized by In Situ Polymerization of Coniferyl Alcohol. Biomacromolecules, 2020, 21, 3163-3175.	2.6	19
7	Enhancing the Antioxidant Activity of Technical Lignins by Combining Solvent Fractionation and Ionicâ€Liquid Treatment. ChemSusChem, 2019, 12, 4799-4809.	3.6	24
8	Toward Sustainable PLA-Based Multilayer Complexes with Improved Barrier Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 3759-3771.	3.2	57
9	Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale. Biomacromolecules, 2019, 20, 515-527.	2.6	11
10	Langmuir–Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. Langmuir, 2018, 34, 9376-9386.	1.6	26
11	Action of lytic polysaccharide monooxygenase on plant tissue is governed by cellular type. Scientific Reports, 2017, 7, 17792.	1.6	21
12	Use of Food and Packaging Model Matrices to Investigate the Antioxidant Properties of Biorefinery Grass Lignins. Journal of Agricultural and Food Chemistry, 2015, 63, 10022-10031.	2.4	32
13	A zoom into the nanoscale texture of secondary cell walls. Plant Methods, 2014, 10, 1.	1.9	89
14	Modeling Progression of Fluorescent Probes in Bioinspired Lignocellulosic Assemblies. Biomacromolecules, 2013, 14, 2196-2205.	2.6	14
15	Substrate and film structure impacts on adhesion properties between lignocellulosic polymers. Materials Research Society Symposia Proceedings, 2012, 1422, 1.	0.1	Ο
16	Natural Organic UV-Absorbent Coatings Based on Cellulose and Lignin: Designed Effects on Spectroscopic Properties. Biomacromolecules, 2012, 13, 4081-4088.	2.6	134
17	Structure and optical properties of plant cell wall bio-inspired materials: Cellulose–lignin multilayer nanocomposites. Comptes Rendus - Biologies, 2011, 334, 839-850.	0.1	29
18	Preparation of Ordered Films of Cellulose Nanocrystals. ACS Symposium Series, 2010, , 115-136.	0.5	11

#	Article	IF	CITATIONS
19	Isolation and analysis of macromolecular fractions responsible for the surface properties in native Champagne wines. Food Research International, 2010, 43, 982-987.	2.9	36
20	Elaboration of Extensinâ^'Pectin Thin Film Model of Primary Plant Cell Wall. Langmuir, 2010, 26, 9891-9898.	1.6	41
21	Langmuir–Blodgett films of cellulose nanocrystals: Preparation and characterization. Journal of Colloid and Interface Science, 2007, 316, 388-397.	5.0	111
22	β-Casein and Symmetrical Triblock Copolymer (PEOâ^'PPOâ^'PEO and PPOâ^'PEOâ^'PPO) Surface Properties at the Airâ^'Water Interface. Langmuir, 2004, 20, 756-763.	1.6	51
23	Coniferyl alcohol reactivity at the air/water interface. Comptes Rendus - Biologies, 2004, 327, 777-784.	0.1	7
24	Polymer thermodynamics of adsorbed protein layers. Current Opinion in Colloid and Interface Science, 2003, 8, 380-386.	3.4	26
25	Effects of Epigallocatechin Gallate on β-Casein Adsorption at the Air/Water Interface. Langmuir, 2003, 19, 737-743.	1.6	30
26	Effect of Frequency and Temperature on Rheological Properties of β-Casein Adsorption Layers. Langmuir, 2003, 19, 72-78.	1.6	26
27	Formation and Characterization of Spread Lignin Layers at the Air/Water Interface. Langmuir, 2002, 18, 5190-5196.	1.6	16
28	Structure and Properties of Adsorption Layers of β-Casein Formed from Guanidine Hydrochloride Rich Solutions. Langmuir, 2001, 17, 1896-1904.	1.6	19
29	Is Grape Invertase a Major Component of the Adsorption Layer Formed at the Air/Champagne Wine Interface?. Langmuir, 2001, 17, 2206-2212.	1.6	21
30	Layers of Macromolecules at the Champagne/Air Interface and the Stability of Champagne Bubbles. Langmuir, 2001, 17, 791-797.	1.6	33
31	Asymmetric Multiblock Copolymers at the Gas–Liquid Interface: Phase Diagram and Surface Pressure. Journal of Colloid and Interface Science, 1999, 214, 143-155.	5.0	44
32	A structural study of β-casein adsorbed layers at the air–water interface using X-ray and neutron reflectivity. International Journal of Biological Macromolecules, 1998, 23, 73-84.	3.6	43
33	Thermal denaturation and gelation of rubisco: effects of pH and ions. International Journal of Biological Macromolecules, 1996, 19, 271-277.	3.6	19