Graeme J Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889776/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Murine Kitl Allele Regulates Skin Mast Cell Density across 58 Collaborative Mouse Cross Strains. Journal of Investigative Dermatology, 2022, 142, 2275-2280.e4.	0.7	0
2	Unexpected High Levels of BRN2/POU3F2 Expression in Human Dermal Melanocytic Nevi. Journal of Investigative Dermatology, 2020, 140, 1299-1302.e4.	0.7	3
3	Regional Variation in Epidermal Susceptibility to UV-Induced Carcinogenesis Reflects Proliferative Activity of Epidermal Progenitors. Cell Reports, 2020, 31, 107702.	6.4	9
4	Murine dorsal hair type is genetically determined by polymorphisms in candidate genes that influence BMP and WNT signalling. Experimental Dermatology, 2020, 29, 450-461.	2.9	2
5	Different genetic mechanisms mediate spontaneous versus UVR-induced malignant melanoma. ELife, 2019, 8, .	6.0	21
6	Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1ASecretion. Journal of Investigative Dermatology, 2018, 138, 893-902.	0.7	9
7	Genetic variation in <scp>IRF</scp> 4 expression modulates growth characteristics, tyrosinase expression and interferonâ€gamma response in melanocytic cells. Pigment Cell and Melanoma Research, 2018, 31, 51-63.	3.3	19
8	Genetic variation in the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway affects contact hypersensitivity responses. Journal of Allergy and Clinical Immunology, 2018, 142, 981-984.e7.	2.9	2
9	Further assessment of exomeâ€wide UVR footprints in melanoma and their possible relevance. Molecular Carcinogenesis, 2017, 56, 1673-1679.	2.7	2
10	A mutation in the <i>Cdon</i> gene potentiates congenital nevus development mediated by NRAS ^{Q61K} . Pigment Cell and Melanoma Research, 2016, 29, 459-464.	3.3	8
11	<scp>ATF</scp> 2 alters melanocyte response and macrophage recruitment in <scp>UV</scp> â€irradiated neonatal mouse skin. Pigment Cell and Melanoma Research, 2015, 28, 481-484.	3.3	4
12	Lack of Evidence From a Transgenic Mouse Model that the Activation and Migration of Melanocytes to the Epidermis after Neonatal UVR Enhances Melanoma Development. Journal of Investigative Dermatology, 2015, 135, 2897-2900.	0.7	3
13	Hair follicle melanocyte precursors are awoken by ultraviolet radiation via a cell extrinsic mechanism. Photochemical and Photobiological Sciences, 2015, 14, 1179-1189.	2.9	8
14	Clinicopathological Characterization of Mouse Models of Melanoma. Methods in Molecular Biology, 2015, 1267, 251-261.	0.9	4
15	Differential Effects of Ultraviolet Irradiation in Neonatal versus Adult Mice Are Not Explained by Defective Macrophage or Neutrophil Infiltration. Journal of Investigative Dermatology, 2014, 134, 1991-1997.	0.7	6
16	A Polymorphic p53 Response Element in KIT Ligand Influences Cancer Risk and Has Undergone Natural Selection. Cell, 2013, 155, 410-422.	28.9	115
17	Plasticity of melanoma in vivo: murine lesions resulting from Trp53, but not Cdk4 or Arf deregulation, display neural transdifferentiation. Pigment Cell and Melanoma Research, 2013, 26, 731-734.	3.3	10
18	UVB-Induced Melanocyte Proliferation in Neonatal Mice Driven by CCR2-Independent Recruitment of Ly6clowMHCIIhi Macrophages. Journal of Investigative Dermatology, 2013, 133, 1803-1812.	0.7	34

GRAEME J WALKER

#	Article	IF	CITATIONS
19	Modeling Epidermal Melanoma in Mice: Moving into New Realms but with Unexpected Complexities. Journal of Investigative Dermatology, 2012, 132, 2299-2302.	0.7	2
20	A blueprint for staging of murine melanocytic lesions based on the <i>Cdk4</i> ^{<i>R24C/R24C</i>} <i>::Tyrâ€</i> <scp><i>NRAS</i>^{<i>Q</i>}</scp> <sup model. Experimental Dermatology, 2012, 21, 676-681.</sup 	> <i>∕6.₽K<td>><!--<b-->søp></td></i>	> <b søp>
21	Modelling melanoma in mice. Pigment Cell and Melanoma Research, 2011, 24, 1158-1176.	3.3	42
22	Pâ€REX1, a Rac guanine exchange factor, links melanocyte development and melanoma progression. Pigment Cell and Melanoma Research, 2011, 24, 1086-1087.	3.3	3
23	Superficial Spreading-Like Melanoma in Arfâ^'/â^'::Tyr-NrasQ61K::K14-Kitl Mice: Keratinocyte Kit Ligand Expression Sufficient to "Translocate―Melanomas from Dermis to Epidermis. Journal of Investigative Dermatology, 2011, 131, 1384-1387.	0.7	8
24	Dual Loss of Rb1 and Trp53 in the Adrenal Medulla Leads to Spontaneous Pheochromocytoma. Neoplasia, 2010, 12, 235-243.	5.3	11
25	Enhancement of DNA repair using topical T4 endonuclease V does not inhibit melanoma formation in <i>Cdk4</i> ^{<i>R24C/R24C</i>} <i>/Tyr-Nras</i> ^{<i>Q61K</i>} mice following neonatal UVR. Pigment Cell and Melanoma Research, 2010, 23, 121-128.	3.3	13
26	Melanocyte homeostasis in vivo tolerates <i>Rb1</i> loss in a developmentally independent fashion. Pigment Cell and Melanoma Research, 2010, 23, 564-570.	3.3	2
27	Differential roles of the pRb and Arf/p53 pathways in murine naevus and melanoma genesis. Pigment Cell and Melanoma Research, 2010, 23, 771-780.	3.3	39
28	Murine Neonatal Melanocytes Exhibit a Heightened Proliferative Response to Ultraviolet Radiation and Migrate to the Epidermal Basal Layer. Journal of Investigative Dermatology, 2009, 129, 184-193.	0.7	45
29	Dual loss of <i>Rb1</i> and <i>Trp53</i> in melanocytes perturbs melanocyte homeostasis and genetic stability in vitro but does not cause melanoma or pigmentation defects in vivo. Pigment Cell and Melanoma Research, 2009, 22, 328-330.	3.3	2
30	Reduced expression of ILâ€18 is a marker of ultraviolet radiationâ€induced melanomas. International Journal of Cancer, 2008, 123, 227-231.	5.1	15
31	Ribosomal stress, p53 activation and the tanning response. Expert Review of Dermatology, 2008, 3, 649-656.	0.3	7
32	Cutaneous melanoma: how does ultraviolet light contribute to melanocyte transformation?. Future Oncology, 2008, 4, 841-856.	2.4	16
33	Molecular characterization of a t(9;12)(p21;q13) balanced chromosome translocation in combination with integrative genomics analysis identifiesC9orf14as a candidate tumor-suppressor. Genes Chromosomes and Cancer, 2007, 46, 155-162.	2.8	10
34	Spontaneous and UV Radiation–Induced Multiple Metastatic Melanomas in Cdk4R24C/R24C/TPras Mice. Cancer Research, 2006, 66, 2946-2952.	0.9	52
35	Melanocytes in conditional Rb-/- mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro. Pigment Cell & Melanoma Research, 2005, 18, 252-264.	3.6	17
36	Neonatal Ultraviolet Radiation Exposure Is Critical for Malignant Melanoma Induction in Pigmented Tpras Transgenic Mice. Journal of Investigative Dermatology, 2005, 125, 1074-1077.	0.7	28

GRAEME J WALKER

#	Article	IF	CITATIONS
37	Microarray expression profiling in melanoma reveals a BRAF mutation signature. Oncogene, 2004, 23, 4060-4067.	5.9	169
38	Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-mb interval. Genes Chromosomes and Cancer, 2004, 41, 56-64.	2.8	37
39	p16INK4A and p14ARF tumour suppressors in melanoma: lessons from the mouse. Lancet, The, 2002, 359, 7-8.	13.7	23
40	Pathways to Melanoma Development: Lessons from the Mouse. Journal of Investigative Dermatology, 2002, 119, 783-792.	0.7	66
41	Lack of TTC4 Mutations in Melanoma. Journal of Investigative Dermatology, 2002, 119, 186-187.	0.7	6
42	Localization of Multiple Melanoma Tumor–Suppressor Genes on Chromosome 11 by Use of Homozygosity Mapping-of-Deletions Analysis. American Journal of Human Genetics, 2000, 67, 417-431.	6.2	45
43	Functional reassessment of P16 variants using a transfection-based assay. International Journal of Cancer, 1999, 82, 305-312.	5.1	47
44	Functional reassessment of P16 variants using a transfection-based assay. , 1999, 82, 305.		1
45	Virtually 100% of melanoma cell lines harbor alterations at the DNA level withinCDKN2A, CDKN2B, or one of their downstream targets. , 1998, 22, 157-163.		119
46	Analysis of the CDKN2A, CDKN2B and CDK4 genes in 48 Australian melanoma kindreds. Oncogene, 1997, 15, 2999-3005.	5.9	78
47	Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genetics, 1996, 12, 97-99.	21.4	756
48	A genetic model of melanoma tumorigenesis based on allelic losses. Genes Chromosomes and Cancer, 1995, 12, 134-141.	2.8	88
49	Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Human Molecular Genetics, 1995, 4, 1845-1852.	2.9	146
50	Simple tandem repeat allelic deletions confirm the preferential loss of distal chromosome 6q in melanoma. International Journal of Cancer, 1994, 58, 203-206.	5.1	44
51	Linkage analysis in familial melanoma kindreds to markers on chromosome 6p. International Journal of Cancer, 1994, 59, 771-775.	5.1	35
52	Hepatocellular carcinoma mutation. Nature, 1991, 352, 764-764.	27.8	50