Nicole Pamme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889328/publications.pdf

Version: 2024-02-01

80 papers

4,881 citations

186209
28
h-index

91828 69 g-index

85 all docs 85 docs citations

85 times ranked $\begin{array}{c} 4821 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	On the Influence of Viscosity and Density of a Liquid Medium on Efficiency of Magnetophoresis. Role of Temperature. IOP Conference Series: Earth and Environmental Science, 2022, 987, 012006.	0.2	O
2	Investigating oxygen transport efficiencies in precision-cut liver slice-based organ-on-a-chip devices. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	6
3	Inertial focusing of microparticles, bacteria, and blood in serpentine glass channels. Electrophoresis, 2021, 42, 2246-2255.	1.3	15
4	Host-Pathogen Adhesion as the Basis of Innovative Diagnostics for Emerging Pathogens. Diagnostics, 2021, 11, 1259.	1.3	5
5	Spheroid-on-chip microfluidic technology for the evaluation of the impact of continuous flow on metastatic potential in cancer models <i>in vitro</i>). Biomicrofluidics, 2021, 15, 044103.	1.2	17
6	A lab-on-a-chip platform for integrated extraction and detection of SARS-CoV-2 RNA in resource-limited settings. Analytica Chimica Acta, 2021, 1177, 338758.	2.6	31
7	Citizen-led sampling to monitor phosphate levels in freshwater environments using a simple paper microfluidic device. PLoS ONE, 2021, 16, e0260102.	1.1	4
8	Detection of doxycycline hyclate and oxymetazoline hydrochloride in pharmaceutical preparations via spectrophotometry and microfluidic paper-based analytical device (μPADs). Analytica Chimica Acta, 2020, 1136, 196-204.	2.6	30
9	Suspension Temperature as a Rheological Control Parameter in Magnetic Separation. Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 318-321.	0.2	2
10	Microfluidic-Based Electrochemical Immunosensing of Ferritin. Biosensors, 2020, 10, 91.	2.3	29
11	Paper-based analytical devices for colorimetric detection of <i>S. aureus</i> and <i>E. coli</i> and their antibiotic resistant strains in milk. Analyst, The, 2020, 145, 7320-7329.	1.7	26
12	Actual Role of the Magnetic Susceptibility of Particles in Magnetophoresis (Magnetic Separation). Glass and Ceramics (English Translation of Steklo I Keramika), 2020, 77, 67-72.	0.2	6
13	On-chip electrochemical detection of glucose towards the miniaturised quality control of carbohydrate-based radiotracers. Analyst, The, 2020, 145, 4920-4930.	1.7	4
14	Realisation of a sub-wavelength dimple using a 193Ânm wavelength photonic nano jet. Chemical Physics Letters, 2020, 750, 137400.	1.2	2
15	FISH and chips: a review of microfluidic platforms for FISH analysis. Medical Microbiology and Immunology, 2020, 209, 373-391.	2.6	18
16	Biosensor for determining average iron content of ferritin by measuring its optical dispersion. , 2020, , .		1
17	"Learning on a chip:―Microfluidics for formal and informal science education. Biomicrofluidics, 2019, 13, 041501.	1.2	20
18	A feasibility study of a leaky waveguide aptasensor for thrombin. Analyst, The, 2019, 144, 6048-6054.	1.7	10

#	Article	IF	CITATIONS
19	Stereolithographic 3D printing of extrinsically self-healing composites. Scientific Reports, 2019, 9, 388.	1.6	42
20	Method for Determining Average Iron Content of Ferritin by Measuring its Optical Dispersion. Analytical Chemistry, 2019, 91, 7366-7372.	3.2	24
21	Two-Step Numerical Approach To Predict Ferrofluid Droplet Generation and Manipulation inside Multilaminar Flow Chambers. Journal of Physical Chemistry C, 2019, 123, 10065-10080.	1.5	12
22	High sensitivity biosensor for Staphylococcus Aureus detection based on tapered a singlemode-no core-singlemode fiber structure. , 2019, , .		0
23	A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects. Physical Chemistry Chemical Physics, 2019, 21, 681-691.	1.3	23
24	Rapid detection of Group B Streptococcus (GBS) from artificial urine samples based on IFAST and ATP bioluminescence assay: from development to practical challenges during protocol testing in Kenya. Analyst, The, 2019, 144, 6889-6897.	1.7	13
25	Fabrication of tailorable pH responsive cationic amphiphilic microgels on a microfluidic device for drug release. Journal of Polymer Science Part A, 2018, 56, 59-66.	2.5	20
26	Microcapsules as assay compartments formed through layer-by-layer deposition. Analytical Methods, 2018, 10, 5335-5340.	1.3	5
27	Plastic Scintillatorâ€Based Microfluidic Devices for Miniaturized Detection of Positron Emission Tomography Radiopharmaceuticals. Chemistry - A European Journal, 2018, 24, 13749-13753.	1.7	13
28	Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility. Journal of Magnetism and Magnetic Materials, 2017, 441, 724-734.	1.0	13
29	On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. Methods in Molecular Biology, 2017, 1547, 69-83.	0.4	12
30	On-chip polyelectrolyte coating onto magnetic droplets $\hat{a} \in \text{``towards continuous flow assembly of drug delivery capsules. Lab on A Chip, 2017, 17, 3785-3795.}$	3.1	38
31	A Microfluidic Device for Rapid Screening of <i>E.â€coli</i> O157:H7 Based on IFAST and ATP Bioluminescence Assay for Water Analysis. Chemistry - A European Journal, 2017, 23, 12754-12757.	1.7	17
32	Magnetic Particle Plug-Based Assays for Biomarker Analysis. Micromachines, 2016, 7, 77.	1.4	9
33	Monolith-based ⁶⁸ Ga processing: a new strategy for purification to facilitate direct radiolabelling methods. Reaction Chemistry and Engineering, 2016, 1, 361-365.	1.9	11
34	Lab-on-a-chip workshop activities for secondary school students. Biomicrofluidics, 2016, 10, 011301.	1.2	13
35	Positron detection in silica monoliths for miniaturised quality control of PET radiotracers. Chemical Communications, 2016, 52, 7221-7224.	2.2	11
36	Development of radiodetection systems towards miniaturised quality control of PET and SPECT radiopharmaceuticals. Lab on A Chip, 2016, 16, 1605-1616.	3.1	26

#	Article	IF	CITATIONS
37	Multiplex sorting of foodborne pathogens by on-chip free-flow magnetophoresis. Analytica Chimica Acta, 2016, 918, 69-76.	2.6	40
38	Sample introduction interface for on-chip nucleic acid-based analysis of Helicobacter pylori from stool samples. Lab on A Chip, 2016, 16, 2108-2115.	3.1	55
39	On-chip acoustophoretic isolation of microflora including S. typhimurium from raw chicken, beef and blood samples. Journal of Microbiological Methods, 2016, 123, 79-86.	0.7	23
40	Microfluidically fabricated pH-responsive anionic amphiphilic microgels for drug release. Journal of Materials Chemistry B, 2016, 4, 3086-3093.	2.9	17
41	Tailoring pH-responsive acrylic acid microgels with hydrophobic crosslinks for drug release. Journal of Materials Chemistry B, 2015, 3, 4524-4529.	2.9	16
42	Diamagnetic repulsion of particles for multilaminar flow assays. RSC Advances, 2015, 5, 103776-103781.	1.7	6
43	Artificial leaf device for hydrogen generation from immobilised C. reinhardtii microalgae. Journal of Materials Chemistry A, 2015, 3, 20698-20707.	5. 2	33
44	On-chip processing of particles and cells via multilaminar flow streams. Analytical and Bioanalytical Chemistry, 2014, 406, 139-161.	1.9	46
45	On-Chip Determination of C-Reactive Protein Using Magnetic Particles in Continuous Flow. Analytical Chemistry, 2014, 86, 10552-10559.	3.2	39
46	Microfluidics., 2014,,.		23
47	Phaseguide assisted liquid lamination for magnetic particle-based assays. Lab on A Chip, 2014, 14, 2334-2343.	3.1	20
48	Advances in processes for PET radiotracer synthesis: Separation of [18F]fluoride from enriched [18O]water. Applied Radiation and Isotopes, 2014, 91, 64-70.	0.7	16
49	Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Advances, 2013, 3, 7209.	1.7	33
50	Radiochemistry on chip: towards dose-on-demand synthesis of PET radiopharmaceuticals. Lab on A Chip, 2013, 13, 2328.	3.1	58
51	Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction. Journal of Chromatography A, 2013, 1280, 117-121.	1.8	18
52	Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Materials Letters, 2013, 95, 182-185.	1.3	28
53	Comparison of Photo-oxidation Reactions in Batch and a New Photosensitizer-Immobilized Microfluidic Device. Organic Letters, 2012, 14, 5724-5727.	2.4	45
54	Microfluidic devices in superconducting magnets: on-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluidics and Nanofluidics, 2012, 13, 625-635.	1.0	47

#	Article	IF	Citations
55	On-chip bioanalysis with magnetic particles. Current Opinion in Chemical Biology, 2012, 16, 436-443.	2.8	107
56	Integrated DNA extraction and amplification using electrokinetic pumping in a microfluidic device. Analytical Methods, 2012, 4, 96-100.	1.3	7
57	Magnetic Nanoparticles inÂLab-on-a-Chip Devices. , 2012, , 277-300.		1
58	Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab on A Chip, 2011 , 11 , 1240 - 1248 .	3.1	80
59	Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab on A Chip, 2011, 11, 1902.	3.1	130
60	Microfluidic platforms for performing surface-based clinical assays. Expert Review of Molecular Diagnostics, 2011, 11, 711-720.	1.5	24
61	Microscreening toxicity system based on living magnetic yeast and gradient chips. Analytical and Bioanalytical Chemistry, 2011, 400, 1009-1013.	1.9	51
62	On-chip pre-concentration and complexation of [18F]fluoride ions via regenerable anion exchange particles for radiochemical synthesis of Positron Emission Tomography tracers. Journal of Chromatography A, 2011, 1218, 4714-4719.	1.8	27
63	Rapid, multistep on-chip DNA hybridisation in continuous flow on magnetic particles. Biosensors and Bioelectronics, 2010, 25, 2172-2176.	5. 3	37
64	Sorting and Manipulation of Magnetic Droplets in Continuous Flow. AIP Conference Proceedings, 2010, , .	0.3	11
65	On-chip diamagnetic repulsion in continuous flow. Science and Technology of Advanced Materials, 2009, 10, 014611.	2.8	39
66	The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. Journal of Magnetism and Magnetic Materials, 2009, 321, 4115-4122.	1.0	47
67	Diamagnetic repulsion—A versatile tool for label-free particle handling in microfluidic devices. Journal of Chromatography A, 2009, 1216, 9055-9062.	1.8	113
68	Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab on A Chip, 2009, 9, 3110.	3.1	91
69	A microfluidic system for performing fast, sequential biochemical procedures on the surface of mobile magnetic particles in continuous flow. Magnetohydrodynamics, 2009, 45, 361-370.	0.5	8
70	Simultaneous bioassays in a microfluidic channel on plugs of different magnetic particles. Analytica Chimica Acta, 2008, 609, 105-112.	2.6	67
71	Rapid on-chip multi-step (bio)chemical procedures in continuous flow – manoeuvring particles through co-laminar reagent streams. Chemical Communications, 2008, , 1220.	2.2	50
72	Continuous flow separations in microfluidic devices. Lab on A Chip, 2007, 7, 1644.	3.1	715

#	Article	IF	CITATIONS
73	Bonding of Soda-Lime Glass Microchips at Low Temperature. , 2006, , .		2
74	Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab on A Chip, 2006, 6, 974.	3.1	459
75	Magnetism and microfluidics. Lab on A Chip, 2006, 6, 24-38.	3.1	1,013
76	Bonding of soda-lime glass microchips at low temperature. Microfluidics and Nanofluidics, 2006, 3, 119-122.	1.0	22
77	On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. Journal of Magnetism and Magnetic Materials, 2006, 307, 237-244.	1.0	109
78	On-Chip Free-Flow Magnetophoresis:Â Continuous Flow Separation of Magnetic Particles and Agglomerates. Analytical Chemistry, 2004, 76, 7250-7256.	3.2	435
79	Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab on A Chip, 2003, 3, 187.	3.1	110
80	Analysis of polynitrophenols and hexyl by liquid chromatography–mass spectrometry using atmospheric pressure ionisation methods and a volatile ion-pairing reagent. Journal of Chromatography A, 2002, 943, 47-54.	1.8	22