Youngkyoo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6889006/publications.pdf

Version: 2024-02-01

217 papers 9,461 citations

35 h-index 94 g-index

219 all docs

219 docs citations

times ranked

219

9878 citing authors

#	Article	IF	CITATIONS
1	Near Infrared Organic Phototransistors With Blend Gate Sensing Layers Consisting of Conjugated and Insulating Polymers. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-8.	2.9	1
2	Organic Light-Dependent Resistors with Near Infrared Light-Absorbing Conjugated Polymer Films. ACS Applied Electronic Materials, 2022, 4, 130-137.	4.3	6
3	Ambipolar organic phototransistors with bulk heterojunction films of p-type and n-type indacenodithienothiophene-containing conjugated polymers. Journal of Materials Chemistry C, 2022, 10, 3951-3958.	5.5	5
4	Waterâ€Soluble Reactive Polymer Blends for Stable Memory Layers in Lowâ€Voltage Nonvolatile Organic Memory Transistors with High Mobility and Dataâ€Retention Characteristics. Macromolecular Rapid Communications, 2022, , 2100922.	3.9	0
5	Near infrared light-sensing semi-transparent organic phototransistors with soluble benzothiadiazole-based conjugated polymer films. Materials Chemistry and Physics, 2022, , 126223.	4.0	0
6	Nearâ€Infrared Organic Phototransistors with pâ€Channel Photosensitive Layers of Conjugated Polymer Composed of bisâ€Octyldodecylâ€Diketopyrrolopyrrole and Benzothiadiazole Units. Advanced Electronic Materials, 2021, 7, .	5.1	12
7	Progress in organic semiconducting materials with high thermal stability for organic lightâ€emitting devices. InformaÄnÃ-Materiály, 2021, 3, 61-81.	17.3	30
8	Short-Wave Infrared-Sensing Organic Phototransistors with a Triarylamine-Based Polymer Doped with a Lewis Acid-Type Small Molecule. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19064-19071.	8.0	8
9	Short-wave infrared organic phototransistors with strong infrared-absorbing polytriarylamine by electron-transfer doping. Npj Flexible Electronics, 2021, 5, .	10.7	19
10	Persistent electrical energy generation from organic diodes under constant pressure: Toward organic gravity nanogenerators. IScience, 2021, 24, 102546.	4.1	0
11	Significant Performance Improvement in nâ€Channel Organic Fieldâ€Effect Transistors with C ₆₀ :C ₇₀ Coâ€Crystals Induced by Poly(2â€ethylâ€2â€oxazoline) Nanodots. Advanced Materials, 2021, 33, e2100421.	21.0	9
12	Performance and Stability of Polymer : Nonfullerene Solar Cells with 100 °Câ€Annealed Electronâ€Collecting Combination Layers. ChemSusChem, 2021, 14, 3488-3493.	6.8	0
13	Organic thermoelectric devices with PEDOT:PSS/ZnO hybrid composites. Chemical Engineering Journal, 2021, 415, 128935.	12.7	31
14	Preface to the Special Issue of ChemSusChem on Advanced Organic Solar Cells. ChemSusChem, 2021, 14, 3426-3427.	6.8	1
15	Performance and Stability of Polymer:Nonfullerene Solar Cells with 100 °Câ€Annealed Electronâ€Collecting Combination Layers. ChemSusChem, 2021, 14, 3425-3425.	6.8	O
16	Hole Injection Role of p-Type Conjugated Polymer Nanolayers in Phosphorescent Organic Light-Emitting Devices. Electronics (Switzerland), 2021, 10, 2283.	3.1	5
17	Photogenerated Charge-Aided Low-Voltage Operation of n-Channel Organic Transistors with n-Type Conjugated Polymers─Toward Photosensor Applications. ACS Applied Polymer Materials, 2021, 3, 6056-6062.	4.4	2
18	Thickness Effect of Polar Polymer Films on the Characteristics of Organic Memory Transistors. Macromolecular Research, 2021, 29, 882-886.	2.4	0

#	Article	IF	Citations
19	Pivotal Role of Middle Subcell Thickness on the Performance of Tripleâ€Junction Tandem Polymer Solar Cells. Solar Rrl, 2020, 4, 2000355.	5.8	0
20	n-Channel organic phototransistors with an n-type conjugated polymer based on indacenodithiophene and naphthalenediimide units. Journal of Materials Chemistry C, 2020, 8, 15778-15787.	5.5	16
21	Near-Infrared Organic Phototransistors with Polymeric Channel/Dielectric/Sensing Triple Layers. Micromachines, 2020, 11, 1061.	2.9	4
22	Protein Nanosphere Anchors for Stabilizing Hydroxylated Polymer Chains in Organic Memory Transistors with Outstanding Retention Characteristics. Advanced Electronic Materials, 2020, 6, 1900920.	5.1	5
23	Nano-crater morphology in hybrid electron-collecting buffer layers for high efficiency polymer:nonfullerene solar cells with enhanced stability. Nanoscale Horizons, 2019, 4, 464-471.	8.0	18
24	Synthesis of Sulfur/Nitrogenâ€Enriched Polyimide and Interlayer Application for Inverted Polymer:Nonfullerene Solar Cells. Solar Rrl, 2019, 3, 1900101.	5.8	5
25	Ionic nanocluster-evolved polymers for low-voltage flexible organic nonvolatile memory transistors. Materials Horizons, 2019, 6, 1899-1904.	12.2	10
26	High efficiency tandem polymer solar cells with MoO ₃ /Ni/ZnO:PEOz hybrid interconnection layers. Nanoscale Horizons, 2019, 4, 1221-1226.	8.0	15
27	Enhanced superoxide sensitivity in organic field-effect transistor sensors by introducing nanoclay-polyphenol-polymer hybrid sensing channels. Journal of Hazardous Materials, 2019, 374, 159-166.	12.4	6
28	Multistacked Detectors with Transparency-Controlled Polymer: Nonfullerene Bulk Heterojunction Sensing Layers for Visible Light Communications. ACS Omega, 2019, 4, 3611-3618.	3.5	7
29	Nanoscale Film Morphology and nâ€Type Digital Memory Characteristics of Ï€â€Conjugated Donor–Acceptor Alternating Copolymer Based on Thiophene and Thiadiazole Units. Macromolecular Rapid Communications, 2019, 40, 1900005.	3.9	4
30	Synthesis of indacenodithienothiophene-based conjugated polymers containing electron-donating/accepting comonomers and their phototransistor characteristics. Polymer Chemistry, 2019, 10, 6324-6333.	3.9	14
31	Low-Voltage Organic Nonvolatile Memory Transistors with Water-Soluble Polymers Containing Thermally Induced Radical Dipoles. ACS Applied Materials & Interfaces, 2019, 11, 48113-48120.	8.0	9
32	Effect of Top Channel Thickness in Near Infrared Organic Phototransistors with Conjugated Polymer Gate-Sensing Layers. Electronics (Switzerland), 2019, 8, 1493.	3.1	8
33	Organic phototransistors with bulk heterojunction sensing-channel layers containing soluble difluorinated diketopyrrolopyrrole acceptor. Dyes and Pigments, 2018, 156, 219-224.	3.7	8
34	Flexible Nearâ€Infrared Plastic Phototransistors with Conjugated Polymer Gateâ€Sensing Layers. Advanced Functional Materials, 2018, 28, 1800704.	14.9	36
35	Ultrasensitive detection of hazardous reactive oxygen species using flexible organic transistors with polyphenol-embedded conjugated polymer sensing layers. Journal of Hazardous Materials, 2018, 355, 17-24.	12.4	22
36	Strong addition effect of n-type polymer with mid-energy level in polymer: fullerene solar cells with power conversion efficiency exceeding 10%. Journal of Materials Chemistry A, 2018, 6, 7480-7487.	10.3	13

3

#	Article	IF	CITATIONS
37	Pronounced Side Chain Effects in Triple Bond-Conjugated Polymers Containing Naphthalene Diimides for n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12921-12929.	8.0	20
38	Organic Phototransistors With Chemically Doped Conjugated Polymer Interlayers for Visible and Near Infrared Light Detection. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	8
39	Investigation of short-term stability in high efficiency polymer: nonfullerene solar cells via quick current-voltage cycling method. Korean Journal of Chemical Engineering, 2018, 35, 2496-2503.	2.7	5
40	Distinctive Nanocrater Structures in Hybrid Electronâ€Collecting Buffer Layers for High Efficiency Polymer:Nonfullerene Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800912.	3.7	5
41	A Soluble Diketopyrrolopyrrole Derivative and Its Applications for Organic Phototransistors. Asian Journal of Organic Chemistry, 2018, 7, 2330-2336.	2.7	5
42	Organic Photodetectors. , 2018, , 317-330.		2
43	Lightâ€Insensitive Organic Fieldâ€Effect Transistors with nâ€Type Conjugated Polymers Containing Dinitrothiophene Units. Advanced Electronic Materials, 2018, 4, 1800375.	5.1	11
44	Highâ€Efficiency Polymer:Nonfullerene Solar Cells with Quaterthiopheneâ€Containing Polyimide Interlayers. Advanced Science, 2018, 5, 1800331.	11.2	20
45	Terahertz Spectroscopy Study of Weak Base-Treated Conducting Polymer Films and Applications for Polymer Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-8.	2.9	1
46	2,2′-Bis(1,3,4-thiadiazole)-Based π-Conjugated Copolymers for Organic Photovoltaics with Exceeding 8% and Its Molecular Weight Dependence of Device Performance. Macromolecules, 2017, 50, 891-899.	4.8	32
47	Efficient Deep Red Light-Sensing All-Polymer Phototransistors with <i>p</i> -type/ <i>n</i> -type Conjugated Polymer Bulk Heterojunction Layers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14983-14989.	8.0	44
48	Ultrasensitive Multi-Functional Flexible Sensors Based on Organic Field-Effect Transistors with Polymer-Dispersed Liquid Crystal Sensing Layers. Scientific Reports, 2017, 7, 2630.	3.3	57
49	Polyacetylene-based polyelectrolyte as a universal interfacial layer for efficient inverted polymer solar cells. Organic Electronics, 2017, 48, 61-67.	2.6	36
50	Strong Composition Effects in All-Polymer Phototransistors with Bulk Heterojunction Layers of p-type and n-type Conjugated Polymers. ACS Applied Materials & Interfaces, 2017, 9, 628-635.	8.0	14
51	UVâ€Sensing Semitransparent Organic Fieldâ€Effect Transistors with Wide Bandgap Small Molecular Channel and Polymeric Gateâ€Insulating Layers. Advanced Electronic Materials, 2017, 3, 1700162.	5.1	15
52	Flexible Thermal Sensors Based on Organic Field-Effect Transistors with Polymeric Channel/Gate-Insulating and Light-Blocking Layers. ACS Omega, 2017, 2, 4065-4070.	3.5	23
53	Thickness Effect of Bulk Heterojunction Layers on the Performance and Stability of Polymer:Fullerene Solar Cells with Alkylthiothiophene-Containing Polymer. ACS Sustainable Chemistry and Engineering, 2017, 5, 9263-9270.	6.7	10
54	Influence of Weak Base Addition to Hole-Collecting Buffer Layers in Polymer:Fullerene Solar Cells. Molecules, 2017, 22, 262.	3.8	1

#	Article	IF	CITATIONS
55	Charging Characteristics of Lithium Ion Battery Using Semi-Solar Modules of Polymer:Fullerene Solar Cells. Energies, 2017, 10, 1886.	3.1	3
56	Characteristics of Organic Field-Effect Transistors with Quick-Annealed Polymer Channel Layers at High Temperature. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 557-560.	0.5	0
57	Effect of Short-Time Annealing on the Performance of Polymer:Fullerene Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2017, 12, 607-610.	0.5	0
58	Nitrogen Ion Beamâ€Mediated Dry Patterning of Conjugated Polymer Films for Organic Fieldâ€Effect Transistors. Advanced Electronic Materials, 2016, 2, 1600115.	5.1	1
59	Polymer Nanodot-Hybridized Alkyl Silicon Oxide Nanostructures for Organic Memory Transistors with Outstanding High-Temperature Operation Stability. Scientific Reports, 2016, 6, 33863.	3.3	6
60	Hybrid Solar Cells With Polymeric Bulk Heterojunction Layers Containing Inorganic Nanoparticles. IEEE Journal of Photovoltaics, 2016, 6, 924-929.	2.5	2
61	All-polymer phototransistors with bulk heterojunction sensing layers of thiophene-based electron-donating and thienopyrroledione-based electron-accepting polymers. Organic Electronics, 2016, 39, 199-206.	2.6	9
62	Broadbandâ \in Solubility Diketopyrrolopyrrole Derivative with Both Polar Cyano and Nonpolar Alkyl Groups for Stable Organic Photosensors and Diffusionâ \in Processed Organic Solar Cells. ChemistrySelect, 2016, 1, 1716-1722.	1.5	1
63	Significant Stability Enhancement in Highâ€Efficiency Polymer:Fullerene Bulk Heterojunction Solar Cells by Blocking Ultraviolet Photons from Solar Light. Advanced Science, 2016, 3, 1500269.	11.2	63
64	Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Copolymer Chains. ACS Applied Materials & Encapsulated by Di-Block Chains. ACS Applied By Di-Block Chains. ACS App	8.0	24
65	Ambipolar Organic Phototransistors with pâ€√ype/nâ€√ype Conjugated Polymer Bulk Heterojunction Lightâ€Sensing Layers. Advanced Electronic Materials, 2016, 2, 1600264.	5.1	46
66	Strong Photo-Amplification Effects in Flexible Organic Capacitors with Small Molecular Solid-State Electrolyte Layers Sandwiched between Photo-Sensitive Conjugated Polymer Nanolayers. Scientific Reports, 2016, 6, 19527.	3.3	6
67	Acidity-Controlled Conducting Polymer Films for Organic Thermoelectric Devices with Horizontal and Vertical Architectures. Scientific Reports, 2016, 6, 33795.	3.3	21
68	>10% Efficiency Polymer:Fullerene Solar Cells with Polyacetyleneâ€Based Polyelectrolyte Interlayers. Advanced Materials Interfaces, 2016, 3, 1600415.	3.7	35
69	Stable low-voltage organic memory transistors with poly(vinyl alcohol) layers stabilized by vinyl silicon oxide interlayers. Organic Electronics, 2016, 34, 223-228.	2.6	8
70	Strong molecular weight effects of gate-insulating memory polymers in low-voltage organic nonvolatile memory transistors with outstanding retention characteristics. NPG Asia Materials, 2016, 8, e235-e235.	7.9	23
71	Physical force-sensitive touch responses in liquid crystal-gated-organic field-effect transistors with polymer dipole control layers. Organic Electronics, 2016, 28, 184-188.	2.6	6
72	All-Polymer Solar Cells with Bulk Heterojunction Films Containing Electron-Accepting Triple Bond-Conjugated Perylene Diimide Polymer. ACS Sustainable Chemistry and Engineering, 2016, 4, 767-774.	6.7	29

#	Article	IF	CITATIONS
73	Deep Blue Laser Gain Medium Based on Triphenylamine Substituted Arylfluorene With Improved Photo-Stability. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 15-20.	2.9	3
74	Organic Phototransistors With All-Polymer Bulk Heterojunction Layers of p-Type and n-Type Sulfur-Containing Conjugated Polymers. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 147-153.	2.9	25
75	Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-Type and Visible Light-Sensing p-Type Polymers. Scientific Reports, 2015, 5, 16457.	3.3	45
76	$5~\rm V$ driving organic non-volatile memory transistors with poly(vinyl alcohol) gate insulator and poly(3-hexylthiophene) channel layers. Applied Physics Letters, 2015, 107, 153302.	3.3	24
77	Aqueous Solutionâ€Processable Small Molecular Metalâ€Chelate Complex Electrolyte for Flexible Allâ€Solid State Energy Storage Devices. Advanced Energy Materials, 2015, 5, 1500402.	19.5	7
78	Inverted polymer fullerene solar cells exceeding 10% efficiency with poly(2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nature Communications, 2015, 6, 8929.	12.8	174
79	Solution-processable all-small molecular bulk heterojunction films for stable organic photodetectors: near UV and visible light sensing. Journal of Materials Chemistry C, 2015, 3, 1513-1520.	5.5	30
80	Liquid Crystal-Gated-Organic Field-Effect Transistors with In-Plane Drain–Source–Gate Electrode Structure. ACS Applied Materials & Draina & Structure. ACS Applied Materials & Draina & Structure. ACS Applied Materials & Draina & Drai	8.0	10
81	Light-Induced Open Circuit Voltage Increase in Polymer Solar Cells with Ternary Bulk Heterojunction Nanolayers. ACS Sustainable Chemistry and Engineering, 2015, 3, 55-62.	6.7	7
82	Effect of halogen-terminated additives on the performance and the nanostructure of all-polymer solar cells. Journal of the Korean Physical Society, 2015, 66, 521-525.	0.7	4
83	Ultrasensitive tactile sensors based on planar liquid crystal-gated-organic field-effect transistors with polymeric dipole control layers. RSC Advances, 2015, 5, 56904-56907.	3.6	6
84	Pronounced Cosolvent Effects in Polymer:Polymer Bulk Heterojunction Solar Cells with Sulfur-Rich Electron-Donating and Imide-Containing Electron-Accepting Polymers. ACS Applied Materials & Amp; Interfaces, 2015, 7, 15995-16002.	8.0	22
85	Effect of Oxygen Plasma Treatment on $\langle I \rangle p \langle I \rangle$ -Type Electrical Properties of Amorphous La $\langle SUB \rangle 2 \langle SUB \rangle NiO \langle SUB \rangle 4 + \langle I \rangle \hat{C} \langle II \rangle \langle SUB \rangle$ Thin Films. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 475-479.	0.5	2
86	Optoelectronic Characteristics of Devices with Conducting Polymer Layers: A Planar Sensor Approach. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 440-443.	0.5	2
87	Characteristics of Photodetectors Fabricated with Fullerene Derivatives: Influence of Light Intensity and Voltage. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 494-497.	0.5	0
88	Polymer Solar Cells with Micrometerâ€Scale Engraved Active Nanolayers Fabricated by Pressing with Metal Molds. Energy Technology, 2014, 2, 713-720.	3.8	2
89	Inverted Organic Photodetectors With ZnO Electron-Collecting Buffer Layers and Polymer Bulk Heterojunction Active Layers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 130-136.	2.9	11
90	Touch sensors based on planar liquid crystal-gated-organic field-effect transistors. AIP Advances, 2014, 4, 097109.	1.3	6

#	Article	IF	Citations
91	8.9% Singleâ€Stack Inverted Polymer Solar Cells with Electronâ€Rich Polymer Nanolayerâ€Modified Inorganic Electronâ€Collecting Buffer Layers. Advanced Energy Materials, 2014, 4, 1301692.	19.5	218
92	Conducting polymer/in-situ generated platinum nanoparticle nanocomposite electrodes for low-cost dye-sensitized solar cells. Electrochimica Acta, 2014, 116, 518-523.	5.2	20
93	All-polymer solar cells with in-situ generated n-type conjugated polymer nanoparticles. Solar Energy Materials and Solar Cells, 2014, 122, 112-119.	6.2	4
94	Strong addition effect of charge-bridging polymer in polymer:fullerene solar cells with low fullerene content. RSC Advances, 2014, 4, 24914-24921.	3.6	4
95	Real-time liquid crystal-based biosensor for urea detection. Analytical Methods, 2014, 6, 5753-5759.	2.7	26
96	Organic solar cells based on conjugated polymers: History and recent advances. Korean Journal of Chemical Engineering, 2014, 31, 1095-1104.	2.7	67
97	Wide range thickness effect of hole-collecting buffer layers for polymer:fullerene solar cells. Organic Electronics, 2013, 14, 2889-2895.	2.6	5
98	Resorcinol-functionalized carbon nanoparticles with a stick-out nanostructure for stable hydrogen bonding with polyester microfibers. RSC Advances, 2013, 3, 19440.	3.6	1
99	Compression-Induced Open Circuit Voltage Increase in All-Polymer Solar Cells with Lithium Fluoride Nanolayers. ACS Sustainable Chemistry and Engineering, 2013, 1, 1280-1285.	6.7	4
100	Poly(3-hexylthiophene-co-benzothiadiazole) (THBT) as an electron-accepting polymer for normal and inverted type all-polymer solar cells. Polymer Chemistry, 2013, 4, 2053.	3.9	60
101	Hybrid Phototransistors Based on Bulk Heterojunction Films of Poly(3-hexylthiophene) and Zinc Oxide Nanoparticle. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1385-1392.	8.0	75
102	Stable Protein Device Platform Based on Pyridine Dicarboxylic Acid-Bound Cubic-Nanostructured Mesoporous Titania Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6873-6878.	8.0	7
103	Influence of annealing temperature on the nanostructure and performance of polymer: Polymer solar cells. Journal of the Korean Physical Society, 2013, 63, 1368-1372.	0.7	5
104	Effects of Hole-Collecting Buffer Layers and Electrodes on the Performance of Flexible Plastic Organic Photovoltaics. International Journal of Photoenergy, 2013, 2013, 1-8.	2.5	4
105	Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch. Scientific Reports, 2013, 3, 2452.	3.3	23
106	Organic nonvolatile memory transistors with self-doped polymer energy well structures. NPG Asia Materials, 2013, 5, e33-e33.	7.9	29
107	Wide band gap triarylamine derivative doped with organosulfonic acid and its application for organic light-emitting devices. Journal of Organic Semiconductors, 2013, 1, 22-29.	1.2	1
108	Influence of Nickel(II) Oxide Nanoparticle Addition on the Performance of Organic Field Effect Transistors. Journal of Nanoscience and Nanotechnology, 2013, 13, 6016-6019.	0.9	1

#	Article	IF	CITATIONS
109	Polymer Solar Cells with Micro-Patterned Bulk Heterojunction Layers. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 557-560.	0.5	1
110	Thickness Effect of Electron-Donating Polymer Layers in Bilayer-Type All-Polymer Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 514-518.	0.5	0
111	Extremely slow photocurrent response from hemoprotein films in planar diode geometry. Applied Physics Letters, 2012, 101, 223701.	3.3	6
112	Characteristics of Protein-Polymer Nanobiocomposite Films for Protein Devices. Journal of Nanoscience and Nanotechnology, 2012, 12, 1226-1229.	0.9	2
113	Direct measurement of extracellular electrical signals from mammalian olfactory sensory neurons in planar triode devices. Analyst, The, 2012, 137, 2047.	3.5	8
114	Phenanthroline diimide as an organic electron-injecting material for organic light-emitting devices. RSC Advances, 2012, 2, 8762.	3.6	6
115	All-polymer solar cells with bulk heterojunction nanolayers of chemically doped electron-donating and electron-accepting polymers. Physical Chemistry Chemical Physics, 2012, 14, 15046.	2.8	16
116	Doping Effect of Organosulfonic Acid in Poly(3-hexylthiophene) Films for Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2012, 4, 1281-1288.	8.0	97
117	Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity. Physica B: Condensed Matter, 2012, 407, 3059-3062.	2.7	19
118	A Pronounced Dispersion Effect of Crystalline Silicon Nanoparticles on the Performance and Stability of Polymer:Fullerene Solar Cells. ACS Applied Materials & Samp; Interfaces, 2012, 4, 5300-5308.	8.0	9
119	In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells. Nanoscale Research Letters, 2012, 7, 641.	5.7	50
120	Effect of silicon-nanoparticle addition on the nanostructure of polythiophene: Fullurene bulk heterojunction solar cells. Journal of the Korean Physical Society, 2012, 61, 234-238.	0.7	5
121	Effect of Co-Solvents on the Performance of All-Polymer Solar Cells Using a New Electron-Accepting Polymer. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 479-482.	0.5	1
122	Hybrid Solar Cells with In-Situ Prepared Inorganic Nanoparticles/Polymer Bulk Heterojunction Films. Journal of Nanoelectronics and Optoelectronics, 2012, 7, 434-438.	0.5	1
123	Diimide nanoclusters play hole trapping and electron injection roles in organic light-emitting devices. Nanoscale, 2011, 3, 1073-1077.	5.6	4
124	Organic phototransistors with nanoscale phase-separated polymer/polymer bulk heterojunction layers. Nanoscale, 2011, 3, 2275.	5.6	88
125	Nanomorphology-driven two-stage hole mobility in blend films of regioregular and regiorandom polythiophenes. Nanoscale, 2011, 3, 4261.	5.6	73
126	Effects of Solvents on ITO Cracks in Ultrasonic Cleaning of ITO-Coated Flexible Substrates for Polymer Solar Cells. Molecular Crystals and Liquid Crystals, 2011, 551, 212-220.	0.9	7

#	Article	IF	Citations
127	Morphology-Dependent Electrical Memory Characteristics of a Well-Defined Brush Polymer Bearing Oxadiazole-Based Mesogens. Journal of Physical Chemistry C, 2011, 115, 19355-19363.	3.1	41
128	Influence of Controlled Acidity of Hole-Collecting Buffer Layers on the Performance and Lifetime of Polymer:Fullerene Solar Cells. Journal of Physical Chemistry C, 2011, 115, 13502-13510.	3.1	69
129	Effect of Side Groups in Polynorbornene Films for Transparent Conductive Substrates. Journal of Nanoscience and Nanotechnology, 2011, 11, 550-554.	0.9	4
130	Effect of film and device annealing in polymer:polymer solar cells with a LiF nanolayer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 382-386.	3.5	10
131	Improved Performance of Polymer:Polymer Solar Cells by Doping Electronâ€Accepting Polymers with an Organosulfonic Acid. Advanced Functional Materials, 2011, 21, 4527-4534.	14.9	41
132	Device Performance and Lifetime of Polymer:Fullerene Solar Cells with UVâ€Ozoneâ€Irradiated Holeâ€Collecting Buffer Layers. ChemSusChem, 2011, 4, 1607-1612.	6.8	8
133	Effect of strong base addition to hole-collecting buffer layer in polymer solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 349-351.	6.2	12
134	Two-dimensional photonic crystal arrays for polymer:fullerene solar cells. Nanotechnology, 2011, 22, 465403.	2.6	8
135	Effect of Film Thickness in Hybrid Polymer/Polymer Solar Cells with Zinc Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2011, 11, 5733-5736.	0.9	3
136	Effect of Low Work Function Electrode and Annealing in Polymer:Polymer Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 258-263.	0.5	0
137	Influence of Nitrogen and Hydrogen Ion Beams on the Optical Absorption and the Ionization Potential of Poly(3-hexylthiophene) Films. Journal of the Korean Physical Society, 2011, 59, 648-652.	0.7	0
138	Influence of Solvent Mixture on the Performance of Polymer:Polymer Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 297-300.	0.5	0
139	Enhanced Power Conversion Efficiency of Polymer Solar Cells Through the Use of 4-Fluorobenzonitrile as an Additive. Journal of Nanoelectronics and Optoelectronics, 2011, 6, 338-342.	0.5	0
140	Thermal Annealing Time Effect on the Performance of Ambipolar Organic Light-Emitting Transistors Based on Conjugated Polymer Blends. Journal of Nanoscience and Nanotechnology, 2010, 10, 6789-6793.	0.9	3
141	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells., 2010,, 63-69.		6
142	Microstructure and properties of rigid rod-like polyimide/flexible coil-like poly(amide-imide) molecular composite films. Macromolecular Research, 2010, 18, 14-21.	2.4	24
143	Annealing time effect on the performance of polymer solar cells having active layers doped with hole-transporting material. Macromolecular Research, 2010, 18, 709-712.	2.4	13
144	Initial Performance Changes of Polymer/Fullerene Solar Cells by Shortâ€Time Exposure to Simulated Solar Light. ChemSusChem, 2010, 3, 476-480.	6.8	19

#	Article	IF	CITATIONS
145	Abrupt Morphology Change upon Thermal Annealing in Poly(3â€Hexylthiophene)/Soluble Fullerene Blend Films for Polymer Solar Cells. Advanced Functional Materials, 2010, 20, 748-754.	14.9	103
146	Synthesis of poly(<i>N</i> àê9â€ethylcarbazoleâ€exoâ€norborneneâ€5,6â€dicarboximide) for holeâ€transporting layer in hybrid organic lightâ€emitting devices. Journal of Polymer Science Part A, 2010, 48, 5189-5197.	2.3	16
147	Colorless Polyimide/Organoclay Nanocomposite Substrates for Flexible Organic Light-Emitting Devices. Journal of Nanoscience and Nanotechnology, 2010, 10, 388-396.	0.9	16
148	Organic solar cells with submicron-thick polymer:fullerene bulk heterojunction films. Applied Physics Letters, 2010, 97, 103503.	3.3	18
149	The composition effect of triphenylamine/polyimide composite nanolayers on the performance of hybrid organic light-emitting devices. Semiconductor Science and Technology, 2010, 25, 105006.	2.0	2
150	Bias-dependent photocurrent response in protein nanolayer-embedded solid state planar diode devices. Nanoscale, 2010, 2, 694.	5.6	4
151	Influence of hole-transporting material addition on the performance of polymer solar cells. Energy and Environmental Science, 2010, 3, 1538.	30.8	12
152	Temperature/time-dependent crystallization of polythiophene:fullerene bulk heterojunction films for polymer solar cells. Nanoscale, 2010, 2, 2384.	5.6	28
153	Effect of Gate Voltage in Organic Phototransistors Based on Polythiophene/Fullerene Bulk Heterojunction Nanolayers. Molecular Crystals and Liquid Crystals, 2010, 519, 260-265.	0.9	4
154	Effect of Long Time Annealing and Incident Light Intensity on the Performance of Polymer: Fullerene Solar Cells. IEEE Nanotechnology Magazine, 2010, 9, 400-406.	2.0	15
155	Hybrid Solar Cells Based on Bulk Heterojunction Films of Conjugated Polymers and Single Crystalline Si Nanowires. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 139-142.	0.5	1
156	Influence of Co-Solvents on the Performance of Polymer/Polymer Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 165-169.	0.5	1
157	Influence of UV-Ozone Treatment to Hole-Collecting Buffer Layer on the Performance of Polymer Solar Cells. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 195-198.	0.5	2
158	Polymer Solar Cells with Polymer/Carbon Nanotube Composite Hole-Collecting Buffer Layers. The Open Physical Chemistry Journal, 2010, 4, 1-3.	0.4	12
159	? Investigation of nanomorphology change in bulk heterojunction films using synchrotron x-ray diffraction technique. Journal of the Korean Physical Society, 2010, 56, 2088-2092.	0.7	5
160	Influence of pressing on the nanostructure and electrical properties of semiconducting polymer nanolayers. Journal of the Korean Physical Society, 2010, 56, 2100-2103.	0.7	0
161	Polymeric Network Nanolayers for Hybrid Organic Light Emitting Devices. , 2009, , .		O
162	Long time thermal annealing effects on the film morphology and performance of polymer solar cells with calcium electrode. Macromolecular Research, 2009, 17, 445-447.	2.4	19

#	Article	IF	Citations
163	Influence of nickel oxide nanolayer and doping in organic light-emitting devices. Journal of Industrial and Engineering Chemistry, 2009, 15, 716-718.	5.8	19
164	Effects of thickness and thermal annealing of the PEDOT:PSS layer on the performance of polymer solar cells. Organic Electronics, 2009, 10, 205-209.	2.6	184
165	Distorted Asymmetric Cubic Nanostructure of Soluble Fullerene Crystals in Efficient Polymer:Fullerene Solar Cells. ACS Nano, 2009, 3, 2557-2562.	14.6	54
166	Insertion of a Cytochrome c Protein into a Complex Lipid Monolayer under an Electric Field. Journal of Physical Chemistry C, 2009, 113, 14377-14380.	3.1	6
167	Distinct Annealing Temperature in Polymer:Fullerene:Polymer Ternary Blend Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1620-1623.	3.1	78
168	Precursor Polymer Effect on Polyimide/Silica Hybrid Nanocomposite Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 4633-4643.	0.9	3
169	Annealing temperature effect of hole-collecting polymeric nanolayer in polymer solar cells. Macromolecular Research, 2008, 16, 185-188.	2.4	12
170	Nanoscale blending of aliphatic and aromatic polyimides: A clue for forming semi-molecular composites and in-situ generation of copolyimide fractions. Polymer Bulletin, 2008, 59, 833-845.	3.3	14
171	Organic/Inorganic Hybrid Composite Films from Polyimide and Organosilica: Effect of the Type of Organosilica Precursors. Polymer Bulletin, 2008, 60, 713-723.	3.3	11
172	Synthesis and characterization of soluble polyimides functionalized with carbazole moieties. Journal of Polymer Science Part A, 2008, 46, 8117-8130.	2.3	32
173	Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008, 33, 581-630.	24.7	848
174	Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Materials, 2008, 7, 158-164.	27.5	1,396
175	Influence of electron-donating polymer addition on the performance of polymer solar cells. Journal Physics D: Applied Physics, 2008, 41, 225101.	2.8	35
176	Influence of thermal annealing on the deformation of a lithium fluoride nanolayer in polymer : fullerene solar cells. Europhysics Letters, 2008, 84, 58002.	2.0	22
177	Mesoporous Silica Nanolayers Infiltrated with Hole-Transporting Molecules for Hybrid Organic Light-Emitting Devices. ACS Nano, 2008, 2, 1137-1142.	14.6	15
178	Power-law-type electron injection through lithium fluoride nanolayers in phosphorescence organic light-emitting devices. Nanotechnology, 2008, 19, 355207.	2.6	28
179	Multilayer organic solar cells with wet-processed polymeric bulk heterojunction film and dry-processed small molecule films. Applied Physics Letters, 2008, 92, 093306.	3.3	14
180	Melting Effect of Hole-Injecting Layer on the Performance of Passive Matrix Organic Light-Emitting Displays. The Open Physical Chemistry Journal, 2008, 2, 13-16.	0.4	1

#	Article	IF	CITATIONS
181	Polymer solar cells with ternary blend nanolayers. Journal of Nanoscience and Nanotechnology, 2008, 8, 6247-52.	0.9	0
182	Mesostructures and properties of transparent block copolymer/silica nanocomposite monoliths. Composite Interfaces, 2007, 14, 545-557.	2.3	2
183	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. Soft Matter, 2007, 3, 117-121.	2.7	37
184	Effect of organosilica isomers on the interfacial interaction in polyimide/aromatic organosilica hybrids. Journal of Applied Polymer Science, 2007, 103, 2507-2513.	2.6	7
185	A photophysical study of PCBM thin films. Chemical Physics Letters, 2007, 445, 276-280.	2.6	156
186	Singlet exciton transfer and fullerene triplet formation in polymer-fullerene blend films. Applied Physics Letters, 2006, 89, 101128.	3.3	70
187	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006, 5, 197-203.	27.5	2,208
188	Molecularly doped polymeric network nanolayers for organic light-emitting devices. Macromolecular Research, 2006, 14, 401-403.	2.4	13
189	Mixing effect of hole-injecting and hole-transporting materials on the performance and lifetime of organic light-emitting devices. Applied Physics Letters, 2006, 88, 043504.	3.3	14
190	Bright red emission from single layer polymer light-emitting devices based on blends of regioregular P3HT and F8BT. Current Applied Physics, 2005, 5, 222-226.	2.4	50
191	Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters, 2005, 86, 063502.	3.3	598
192	Efficient blue organic light-emitting devices with charge carrier confining nanostructure formed by wide band gap molecule doping. Nanotechnology, 2004, 15, 149-153.	2.6	15
193	Polyimide as a Plastic Substrate for the Flexible Organic Electroluminescent Device. Materials Research Society Symposia Proceedings, 2004, 814, 278.	0.1	0
194	Red hybrid organic light-emitting device fabricated with molecularly doped polyimide thin film containing hole-transporting nanoparticles. Solid-State Electronics, 2004, 48, 633-640.	1.4	8
195	An Electronically Active Molecularly Doped Polyimide Hole Injection Layer for an Efficient Hybrid Organic Light-Emitting Device. Chemistry of Materials, 2004, 16, 5051-5057.	6.7	32
196	Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole). Chemistry of Materials, 2004, 16, 4812-4818.	6.7	219
197	Accelerated pre-oxidation method for healing progressive electrical short in organic light-emitting devices. Applied Physics Letters, 2003, 82, 2200-2202.	3.3	40
198	Synthesis and Characteristics of Poly[N,Nâ€-diphenyl-N,Nâ€-bis(4-aminobiphenyl)-(1,1â€-biphenyl)-4,4â€-diami pyromellitimide] as a Hole Injecting and Transporting Layer for Hybrid Organic Light-Emitting Device. Macromolecules, 2002, 35, 8759-8767.	ne 4.8	30

#	Article	IF	CITATIONS
199	Hybrid organic light-emitting device fabricated with semiconducting polyimide via mixed vapor deposition polymerization. IEEE Journal of Quantum Electronics, 2002, 38, 1039-1046.	1.9	4
200	Bright pure blue emission from multilayer organic electroluminescent device with purified unidentate organometallic complex. Applied Physics Letters, 2001, 79, 1387-1389.	3.3	52
201	Photoemission spectroscopy study of Alq3 and metal mixed interfaces. Applied Physics Letters, 2001, 79, 4595-4597.	3.3	13
202	Non-linear charge conduction and emission behaviour of OELD fabricated with Alq3 and TPD-doped soluble polyimide. Advanced Materials for Optics and Electronics, 2000, 10, 273-283.	0.4	24
203	Contact resistance in interface of metal - light emitting organic thin films. Thin Solid Films, 2000, 363, 302-305.	1.8	5
204	Hole-transporting polyimide for organic electroluminescent display. Thin Solid Films, 2000, 363, 263-267.	1.8	20
205	Time-resolved light scattering and FTIR spectroscopic studies on blends of polypropylene grafted with maleic anhydride and zinc salt of sulfonated EPDM lonomer. Polymer Engineering and Science, 2000, 40, 1816-1824.	3.1	12
206	Thermal and Optical Stabilities of Photoisomerizable Polyimide Layers for Nematic Liquid Crystal Alignments. Japanese Journal of Applied Physics, 1998, 37, 5663-5668.	1.5	81
207	Fracture toughness and properties of plasticized PVC and thermoplastic polyurethane blends. Polymer, 1998, 39, 4765-4772.	3.8	46
208	Mixing effect of chelate complex and metal in organic light-emitting diodes. Applied Physics Letters, 1998, 72, 1757-1759.	3.3	14
209	Electroluminescence of Dye-Dispersed BPDA-PDA Polyimide Light Emitting Diode(LED). Molecular Crystals and Liquid Crystals, 1997, 295, 31-34.	0.3	8
210	Light-emitting diode based on oligo-phenylene vinylene and butyl-PBD blends. Solid State Communications, 1997, 102, 895-898.	1.9	20
211	Compatibilizer in Polymer Blends for the Recycling of Plastics Waste I: Preliminary Studies on 50/50 wt% Virgin Polyblends. Polymers for Advanced Technologies, 1996, 7, 483-492.	3.2	37
212	Fracture toughness investigation of the dynamically vulcanized EPDM/PP/ionomer ternary blends using the J-integral via the locus method. Journal of Materials Science, 1996, 31, 2917-2924.	3.7	12
213	The control of miscibility of PP/EPDM blends by adding lonomers and applying dynamic vulcanization. Polymer Engineering and Science, 1995, 35, 1592-1599.	3.1	31
214	Fracture mechanics investigation on the PP/EPDM/ionomer ternary blends using j-integral by locus method. Journal of Applied Polymer Science, 1994, 51, 1381-1388.	2.6	14
215	Rheological properties, tensile properties, and morphology of PP/EPDM/lonomer ternary blends. Journal of Applied Polymer Science, 1994, 51, 1453-1461.	2.6	27
216	Dielectric properties of inorganic-organic silica-polyimide composite films prepared via sol-gel and thermal imidization processes. , 0 , , .		0

#	Article	IF	CITATIONS
217	Near Infrared Lightâ€Sensing Organic Lightâ€Dependent Resistors Based on Dialkoxybenzothiadiazoleâ€Containing Conjugated Polymer. Physica Status Solidi (A) Applications and Materials Science, 0, , 2200068.	1.8	2