
Behzad Koozegar Kaleji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6888957/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Nb dopant on the structural and optical properties of nanocrystalline TiO2 thin films. Materials Chemistry and Physics, 2012, 132, 210-215.	4.0	64
2	Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures. Journal of Sol-Gel Science and Technology, 2015, 74, 765-773.	2.4	34
3	Nanocrystalline sol–gel TiO2–SnO2 coatings: Preparation, characterization and photo-catalytic performance. Materials Research Bulletin, 2012, 47, 362-369.	5.2	33
4	High temperature stability and photocatalytic activity of nanocrystalline anatase powders with Zr and Si co-dopants. Journal of Sol-Gel Science and Technology, 2014, 69, 351-356.	2.4	33
5	Optical and structural properties of TiO \$\$_{mathbf{2}}\$\$ 2 nanocomposite doped by Si and Cu at high temperature. Optical and Quantum Electronics, 2015, 47, 1751-1763.	3.3	28
6	Optical and structural properties of nanocrystalline anatase powders doped by Zr, Si and Cu at high temperature. Optical and Quantum Electronics, 2015, 47, 2423-2434.	3.3	26
7	Effect of Cu2+, Si4+ and Zr4+ dopant on structural, optical and photocatalytic properties of titania nanopowders. Optical and Quantum Electronics, 2016, 48, 1.	3.3	26
8	Synthesis and characterisation of the mesoporous ZnO-TiO ₂ nanocomposite; Taguchi optimisation and photocatalytic methylene blue degradation under visible light. Materials Technology, 2020, 35, 281-289.	3.0	24
9	The effect of Sn dopant on crystal structure and photocatalytic behavior of nanostructured titania thin films. Journal of Sol-Gel Science and Technology, 2011, 60, 99-107.	2.4	23
10	Temperature Stability and Photocatalytic Activity of Nanocrystalline Cristobalite Powders with Cu Dopant. Silicon, 2017, 9, 943-948.	3.3	17
11	Enhanced photo-catalytic activity of TiO2 nanostructured thin films under solar light by Sn and Nb co-doping. Journal of Sol-Gel Science and Technology, 2013, 65, 195-203.	2.4	15
12	Effect of Sn and La doping on optical and hydrophilic properties of TiO2 thin film. Optical and Quantum Electronics, 2016, 48, 1.	3.3	14
13	Optical and Structure Properties of Nanocrystalline Titania Powders with Cu Dopant. Silicon, 2017, 9, 285-291.	3.3	14
14	In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surfaces and Interfaces, 2021, 24, 101072.	3.0	13
15	Effect of Cu and Zr Co-doped SiO2 Nanoparticles on the Stability of Phases (Quartz-Tridymite-Cristobalite) and Degradation of Methyl Orange at High Temperature. Silicon, 2017, 9, 293-299.	3.3	10
16	Structural, photocatalytic and surface analysis of Nb/Ag codoped TiO2 mesoporous nanoparticles. Journal of Sol-Gel Science and Technology, 2020, 96, 728-741.	2.4	10
17	Sn/Ce co-doping of TiO2 nanoparticles: influence of dopants concentration on optical and structural characteristics. Journal of Materials Science: Materials in Electronics, 2016, 27, 8524-8531.	2.2	9
18	Improved visible light photocatalytic activity of TiO2 nano powders with metal ions doping for glazed ceramic tiles. Optical and Ouantum Electronics, 2017, 49, 1.	3.3	9

#	Article	IF	CITATIONS
19	Sol–gel synthesis of Sn/Fe co-doped TiO2 nanoparticles: study of structural, optical and photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 12351-12359.	2.2	9
20	Photocatalytic evaluation of a titania thin film on glazed porcelain substrates via a TiCl4 precursor. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 289-298.	1.7	8
21	Comparison of optical and structural properties of nanostructure TiO2 thin film doped by Sn and Nb. Journal of Sol-Gel Science and Technology, 2013, 67, 312-320.	2.4	6
22	Comparison of sol-gel and hydrothermal synthesis methods on the structural, optical and photocatalytic properties of Nb/Ag codoped TiO ₂ mesoporous nanoparticles. International Journal of Environmental Analytical Chemistry, 2022, 102, 3357-3372.	3.3	5
23	Enhanced photoinduced super-hydrophilicity in sol–gel TiO2 thin films with co-doped Sn/Nb. Journal of Sol-Gel Science and Technology, 2014, 69, 412-417.	2.4	4
24	Influence of co-doping of Sn/W on the structural and photocatalytic activity of \$\$hbox {TiO}_{2}\$\$ TiO 2 nanoparticles for MB degradation. Optical and Quantum Electronics, 2015, 47, 2075-2086.	3.3	4
25	The Effect of Sn/Si Dopant on Optical and Structural Properties of Nanostructured Zinc Oxide Thin Films. Silicon, 2018, 10, 503-508.	3.3	4
26	TCA (Ag doped TiO2-CuO) mesoporous composite nanoparticles: optical, XPS and morphological characterization. Journal of Materials Science: Materials in Electronics, 2021, 32, 13450-13461.	2.2	2
27	Effect of CuO nanoparticle additive on optical, photocatalytic and surface properties of TiO ₂ mesoporous nanoparticles. International Journal of Materials Research, 2022, 113, 222-232.	0.3	0