Chao-Wei Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6888852/publications.pdf Version: 2024-02-01

<u>CHAO-\λ/fi Tsai</u>

#	Article	IF	CITATIONS
1	Frequency-dependent polarization of repeating fast radio bursts—implications for their origin. Science, 2022, 375, 1266-1270.	12.6	55
2	The Potential of Detecting Radio-flaring Ultracool Dwarfs at L band in the FAST Drift-scan Survey. Research in Astronomy and Astrophysics, 2022, 22, 065013.	1.7	1
3	The Large Dispersion and Scattering of FRB 20190520B Are Dominated by the Host Galaxy. Astrophysical Journal, 2022, 931, 87.	4.5	16
4	Deep Simultaneous Limits on Optical Emission from FRB 20190520B by 24.4 fps Observations with Tomo-e Gozen. Astrophysical Journal, 2022, 931, 109.	4.5	8
5	A repeating fast radio burst associated with a persistent radio source. Nature, 2022, 606, 873-877.	27.8	98
6	An exploration of how training set composition bias in machine learning affects identifying rare objects. Astronomy and Computing, 2022, 40, 100617.	1.7	1
7	The black hole masses of extremely luminous radio- <i>WISE</i> selected galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1527-1548.	4.4	2
8	Kinematics and star formation of high-redshift hot dust-obscured quasars as seen by ALMA. Astronomy and Astrophysics, 2021, 654, A37.	5.1	10
9	Cold molecular gas and free–free emission from hot, dust-obscured galaxies at z â^¼ 3. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1565-1578.	4.4	12
10	Supermassive binary black hole evolution can be traced by a small SKA pulsar timing array. Physical Review D, 2020, 102, .	4.7	9
11	Spectral Classification and Ionized Gas Outflows in zÂâ^1⁄4Â2 WISE-selected Hot Dust-obscured Galaxies. Astrophysical Journal, 2020, 888, 110.	4.5	18
12	Hot Dust-obscured Galaxies with Excess Blue Light. Astrophysical Journal, 2020, 897, 112.	4.5	16
13	Fast Outflows in Hot Dust-obscured Galaxies Detected with Keck/NIRES. Astrophysical Journal, 2020, 905, 16.	4.5	17
14	The Contribution of Galaxies to the 3.4 μm Cosmic Infrared Background as Measured Using WISE. Astrophysical Journal, 2019, 887, 207.	4.5	2
15	The WISE Extended Source Catalog (WXSC). I. The 100 Largest Galaxies. Astrophysical Journal, Supplement Series, 2019, 245, 25.	7.7	74
16	The environments of luminous radio-WISE selected infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 514-528.	4.4	8
17	Heavy X-ray obscuration in the most luminous galaxies discovered by WISE. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4528-4540.	4.4	44
18	Super-Eddington Accretion in the WISE-selected Extremely Luminous Infrared Galaxy W2246â^'0526. Astrophysical Journal, 2018, 868, 15.	4.5	18

Chao-Wei Tsai

#	Article	IF	CITATIONS
19	The multiple merger assembly of a hyperluminous obscured quasar at redshift 4.6. Science, 2018, 362, 1034-1036.	12.6	36
20	The 2.4 μm Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results. Astrophysical Journal, 2018, 866, 45.	4.5	3
21	The 2.4 μm Galaxy Luminosity Function as Measured Using WISE. II. Sample Selection. Astrophysical Journal, 2018, 866, 44.	4.5	1
22	Eddington-limited Accretion in z â^1⁄4 2 WISE-selected Hot, Dust-obscured Galaxies. Astrophysical Journal, 2018, 852, 96.	4.5	42
23	NuSTAR OBSERVATIONS OF WISE J1036+0449, A GALAXY AT zÂâ^¼Â1 OBSCURED BY HOT DUST. Astrophysical Journal, 2017, 835, 105.	4.5	55
24	The 2.4 μm Galaxy Luminosity Function As Measured Using WISE. I. Measurement Techniques. Astronomical Journal, 2017, 153, 189.	4.7	5
25	The Role of the Most LuminousÂObscured AGNs in Galaxy Assembly at zÂâ^1⁄4Â2. Astrophysical Journal, 2017, 844, 106.	4.5	28
26	Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4565-4577.	4.4	18
27	PROPERTIES OF INTERSTELLAR MEDIUM IN INFRARED-BRIGHT QSOs PROBED BY [O i] 63 μm AND [C ii] 158 μr EMISSION LINES*. Astrophysical Journal, 2016, 824, 146.	n 4.5	9
28	HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?. Astrophysical Journal, 2016, 819, 111.	4.5	47
29	THE STRIKINGLY UNIFORM, HIGHLY TURBULENT INTERSTELLAR MEDIUM OF THE MOST LUMINOUS GALAXY IN THE UNIVERSE. Astrophysical Journal Letters, 2016, 816, L6.	8.3	58
30	RADIO JET FEEDBACK AND STAR FORMATION IN HEAVILY OBSCURED, HYPERLUMINOUS QUASARS AT REDSHIFTS â^¼ 0.5–3. I. ALMA OBSERVATIONS. Astrophysical Journal, 2015, 813, 45.	4.5	37
31	Mid-infrared [Nell] Imaging of Young Massive Star Clusters Near Galactic Nuclei. Proceedings of the International Astronomical Union, 2015, 12, 161-162.	0.0	0
32	THE MOST LUMINOUS GALAXIES DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2015, 805, 90.	4.5	129
33	HALF OF THE MOST LUMINOUS QUASARS MAY BE OBSCURED: INVESTIGATING THE NATURE OF <i>WISE</i> -SELECTED HOT DUST-OBSCURED GALAXIES. Astrophysical Journal, 2015, 804, 27.	4.5	138
34	Submillimetre observations of WISE/radio-selected AGN and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3325-3338.	4.4	35
35	INTERFEROMETRIC FOLLOW-UP OF <i>WISE </i> HYPER-LUMINOUS HOT, DUST-OBSCURED GALAXIES. Astrophysical Journal, 2014, 793, 8.	4.5	30
36	Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 146-157.	4.4	55

CHAO-WEI TSAI

#	Article	IF	CITATIONS
37	<i>NuSTAR</i> AND <i>XMM-NEWTON</i> OBSERVATIONS OF LUMINOUS, HEAVILY OBSCURED, <i>WISE</i> -SELECTED QUASARS AT <i>Z</i> â^1/4 2. Astrophysical Journal, 2014, 794, 102.	4.5	93
38	UV-BRIGHT NEARBY EARLY-TYPE GALAXIES OBSERVED IN THE MID-INFRARED: EVIDENCE FOR A MULTI-STAGE FORMATION HISTORY BY WAY OF <i>WISE</i> AND <i>GALEX</i> IMAGING. Astronomical Journal, 2013, 146, 77.	4.7	18
39	THE CIRCUMNUCLEAR STAR FORMATION ENVIRONMENT OF NGC 6946: Br γ AND H ₂ RESULTS FROM KECK INTEGRAL FIELD SPECTROSCOPY. Astrophysical Journal, 2013, 776, 70.	4.5	10
40	THE <i>NuSTAR</i> EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION. Astrophysical Journal, 2013, 773, 125.	4.5	73
41	WISE J233237.05–505643.5: A DOUBLE-PEAKED, BROAD-LINED ACTIVE GALACTIC NUCLEUS WITH A SPIRAL-SHAPED RADIO MORPHOLOGY. Astrophysical Journal, 2013, 779, 41.	4.5	11
42	A NEW POPULATION OF HIGH- <i>z</i> , DUSTY Lyα EMITTERS AND BLOBS DISCOVERED BY <i>WISE</i> : FEEDBACK CAUGHT IN THE ACT?. Astrophysical Journal, 2013, 769, 91.	4.5	75
43	<i>WISE</i> DETECTIONS OF KNOWN QSOs AT REDSHIFTS GREATER THAN SIX. Astrophysical Journal, 2013, 778, 113.	4.5	18
44	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER </i> . II. PROPERTIES OF <i>WISE </i> -SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BO×TES FIELD. Astrophysical Journal, 2013, 772, 26.	4.5	316
45	EXTENDING THE NEARBY GALAXY HERITAGE WITH <i>>WISE </i> >: FIRST RESULTS FROM THE <i>>WISE </i> >ENHANCED RESOLUTION GALAXY ATLAS. Astronomical Journal, 2013, 145, 6.	4.7	236
46	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH <i>WISE</i> AND SDSS. Astronomical Journal, 2013, 145, 55.	4.7	146
47	CONSTRUCTING A <i>WISE</i> HIGH RESOLUTION GALAXY ATLAS. Astronomical Journal, 2012, 144, 68.	4.7	65
48	<i>SPITZER</i> PHOTOMETRY OF <i>WISE</i> -SELECTED BROWN DWARF AND HYPER-LUMINOUS INFRARED GALAXY CANDIDATES. Astronomical Journal, 2012, 144, 148.	4.7	29
49	OPTICAL SPECTROSCOPIC SURVEY OF HIGH-LATITUDE <i>WISE </i> Journal, 2012, 143, 7.	4.7	24
50	SUBMILLIMETER FOLLOW-UP OF <i>WISE</i> -SELECTED HYPERLUMINOUS GALAXIES. Astrophysical Journal, 2012, 756, 96.	4.5	120
51	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER </i> . I. CHARACTERIZING <i>WISE </i> -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2012, 753, 30.	4.5	637
52	THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE <i>>WISE</i> > ALL-SKY AND <i>>HERSCHEL</i> > ATLAS SURVEYS. Astrophysical Journal Letters, 2012, 750, L18.	8.3	11
53	THE FIRST HYPER-LUMINOUS INFRARED GALAXY DISCOVERED BY <i>WISE </i> . Astrophysical Journal, 2012, 755, 173.	4.5	149
54	ORIGIN OF 12 μm EMISSION ACROSS GALAXY POPULATIONS FROM <i>WISE</i> AND SDSS SURVEYS. Astrophysical Journal, 2012, 748, 80.	4.5	76

Chao-Wei Tsai

#	Article	IF	CITATIONS
55	THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT <i>z</i> > 7. Astrophysical Journal, 2012, 749, 88.	4.5	10
56	<i>WISE</i> DISCOVERY OF LOW-METALLICITY BLUE COMPACT DWARF GALAXIES. Astrophysical Journal Letters, 2011, 736, L22.	8.3	46
57	SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01. Astrophysical Journal, 2011, 743, 198.	4.5	2
58	THE <i>SPITZER</i> - <i>WISE</i> SURVEY OF THE ECLIPTIC POLES. Astrophysical Journal, 2011, 735, 112.	4.5	536
59	THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> (<i>WISE</i>). Astrophysical Journal, Supplement Series, 2011, 197, 19.	7.7	317
60	FIRST VIEWS OF A NEARBY LIRG: STAR FORMATION AND MOLECULAR GAS IN IRAS 04296+2923. Astronomical Journal, 2010, 140, 1294-1305.	4.7	14
61	THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE. Astronomical Journal, 2010, 140, 1868-1881.	4.7	5,751
62	LOCATING THE YOUNGEST H II REGIONS IN M82 WITH 7 mm CONTINUUM MAPS. Astronomical Journal, 2009, 137, 4655-4669.	4.7	10
63	Subarcsecond?Resolution Radio Maps of Nearby Spiral Galaxies. Astronomical Journal, 2006, 132, 2383-2397.	4.7	29
64	Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method. Optics Letters, 1999, 24, 1732.	3.3	25
65	Deconvolution of local surface response from surface topography in optical profilometry by a dual-scan method O		0