Chao-Wei Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6888852/publications.pdf

Version: 2024-02-01

65 papers

9,982 citations

30 h-index 63 g-index

66 all docs 66
docs citations

66 times ranked 8705 citing authors

#	Article	IF	CITATIONS
1	THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE. Astronomical Journal, 2010, 140, 1868-1881.	4.7	5,751
2	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> . I. CHARACTERIZING <i>WISE</i> -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS. Astrophysical Journal, 2012, 753, 30.	4.5	637
3	THE <i>>SPITZER</i> - <i>WISE</i> SURVEY OF THE ECLIPTIC POLES. Astrophysical Journal, 2011, 735, 112.	4.5	536
4	THE FIRST HUNDRED BROWN DWARFS DISCOVERED BY THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> (<i>WISE</i>) . Astrophysical Journal, Supplement Series, 2011, 197, 19.	7.7	317
5	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER</i> I. PROPERTIES OF <i>WISE</i> SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BO×TES FIELD. Astrophysical Journal, 2013, 772, 26.	4.5	316
6	EXTENDING THE NEARBY GALAXY HERITAGE WITH < i>WISE < /i>: FIRST RESULTS FROM THE < i>WISE < /i> ENHANCED RESOLUTION GALAXY ATLAS. Astronomical Journal, 2013, 145, 6.	4.7	236
7	THE FIRST HYPER-LUMINOUS INFRARED GALAXY DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2012, 755, 173.	4.5	149
8	CHARACTERIZING THE MID-INFRARED EXTRAGALACTIC SKY WITH < i>WISE < /i> AND SDSS. Astronomical Journal, 2013, 145, 55.	4.7	146
9	HALF OF THE MOST LUMINOUS QUASARS MAY BE OBSCURED: INVESTIGATING THE NATURE OF <i>WISE</i> SELECTED HOT DUST-OBSCURED GALAXIES. Astrophysical Journal, 2015, 804, 27.	4.5	138
10	THE MOST LUMINOUS GALAXIES DISCOVERED BY <i>WISE</i> . Astrophysical Journal, 2015, 805, 90.	4.5	129
11	SUBMILLIMETER FOLLOW-UP OF <i>WISE </i> -SELECTED HYPERLUMINOUS GALAXIES. Astrophysical Journal, 2012, 756, 96.	4.5	120
12	A repeating fast radio burst associated with a persistent radio source. Nature, 2022, 606, 873-877.	27.8	98
13	<i>NuSTAR</i> AND <i>XMM-NEWTON</i> OBSERVATIONS OF LUMINOUS, HEAVILY OBSCURED, <i>WISE</i> -SELECTED QUASARS AT <i>Z</i> â²¼ 2. Astrophysical Journal, 2014, 794, 102.	4.5	93
14	ORIGIN OF $12\hat{l}$ 4m EMISSION ACROSS GALAXY POPULATIONS FROM < i>WISE < /i>AND SDSS SURVEYS. Astrophysical Journal, 2012, 748, 80.	4.5	76
15	A NEW POPULATION OF HIGH- <i>z</i> , DUSTY Lyα EMITTERS AND BLOBS DISCOVERED BY <i>WISE</i> FEEDBACK CAUGHT IN THE ACT?. Astrophysical Journal, 2013, 769, 91.	4.5	75
16	The WISE Extended Source Catalog (WXSC). I. The 100 Largest Galaxies. Astrophysical Journal, Supplement Series, 2019, 245, 25.	7.7	74
17	THE <i>NuSTAR</i> EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION. Astrophysical Journal, 2013, 773, 125.	4.5	73
18	CONSTRUCTING A <i>WISE</i> HIGH RESOLUTION GALAXY ATLAS. Astronomical Journal, 2012, 144, 68.	4.7	65

#	Article	IF	CITATIONS
19	THE STRIKINGLY UNIFORM, HIGHLY TURBULENT INTERSTELLAR MEDIUM OF THE MOST LUMINOUS GALAXY IN THE UNIVERSE. Astrophysical Journal Letters, 2016, 816, L6.	8.3	58
20	Submillimetre observations of WISE-selected high-redshift, luminous, dusty galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 443, 146-157.	4.4	55
21	NuSTAR OBSERVATIONS OF WISE J1036+0449, A GALAXY AT zÂâ^¼Â1 OBSCURED BY HOT DUST. Astrophysical Journal, 2017, 835, 105.	4.5	55
22	Frequency-dependent polarization of repeating fast radio burstsâ€"implications for their origin. Science, 2022, 375, 1266-1270.	12.6	55
23	HOT DUST OBSCURED GALAXIES WITH EXCESS BLUE LIGHT: DUAL AGN OR SINGLE AGN UNDER EXTREME CONDITIONS?. Astrophysical Journal, 2016, 819, 111.	4.5	47
24	<i>WISE</i> DISCOVERY OF LOW-METALLICITY BLUE COMPACT DWARF GALAXIES. Astrophysical Journal Letters, 2011, 736, L22.	8.3	46
25	Heavy X-ray obscuration in the most luminous galaxies discovered by WISE. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4528-4540.	4.4	44
26	Eddington-limited Accretion in z $\hat{a}^{1/4}$ 2 WISE-selected Hot, Dust-obscured Galaxies. Astrophysical Journal, 2018, 852, 96.	4.5	42
27	RADIO JET FEEDBACK AND STAR FORMATION IN HEAVILY OBSCURED, HYPERLUMINOUS QUASARS AT REDSHIFTS â^1⁄4 0.5–3. I. ALMA OBSERVATIONS. Astrophysical Journal, 2015, 813, 45.	4.5	37
28	The multiple merger assembly of a hyperluminous obscured quasar at redshift 4.6. Science, 2018, 362, 1034-1036.	12.6	36
29	Submillimetre observations of WISE/radio-selected AGN and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 448, 3325-3338.	4.4	35
30	INTERFEROMETRIC FOLLOW-UP OF <i>WISE </i> HYPER-LUMINOUS HOT, DUST-OBSCURED GALAXIES. Astrophysical Journal, 2014, 793, 8.	4.5	30
31	Subarcsecond?Resolution Radio Maps of Nearby Spiral Galaxies. Astronomical Journal, 2006, 132, 2383-2397.	4.7	29
32	<i>SPITZER</i> PHOTOMETRY OF <i>WISE</i> -SELECTED BROWN DWARF AND HYPER-LUMINOUS INFRARED GALAXY CANDIDATES. Astronomical Journal, 2012, 144, 148.	4.7	29
33	The Role of the Most LuminousÂObscured AGNs in Galaxy Assembly at zÂâ^1/4Â2. Astrophysical Journal, 2017, 844, 106.	4.5	28
34	Deconvolution of local surface response from topography in nanometer profilometry with a dual-scan method. Optics Letters, 1999, 24, 1732.	3.3	25
35	OPTICAL SPECTROSCOPIC SURVEY OF HIGH-LATITUDE <i>WISE </i> Journal, 2012, 143, 7.	4.7	24
36	UV-BRIGHT NEARBY EARLY-TYPE GALAXIES OBSERVED IN THE MID-INFRARED: EVIDENCE FOR A MULTI-STAGE FORMATION HISTORY BY WAY OF <i>WISE </i> /i>AND <i>GALEX </i> /i>IMAGING. Astronomical Journal, 2013, 146, 77.	4.7	18

#	Article	IF	CITATIONS
37	<i>WISE</i> DETECTIONS OF KNOWN QSOs AT REDSHIFTS GREATER THAN SIX. Astrophysical Journal, 2013, 778, 113.	4.5	18
38	Overdensities of SMGs around WISE-selected, ultraluminous, high-redshift AGNs. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4565-4577.	4.4	18
39	Super-Eddington Accretion in the WISE-selected Extremely Luminous Infrared Galaxy W2246â^'0526. Astrophysical Journal, 2018, 868, 15.	4.5	18
40	Spectral Classification and Ionized Gas Outflows in zÂâ^1/4Â2 WISE-selected Hot Dust-obscured Galaxies. Astrophysical Journal, 2020, 888, 110.	4.5	18
41	Fast Outflows in Hot Dust-obscured Galaxies Detected with Keck/NIRES. Astrophysical Journal, 2020, 905, 16.	4.5	17
42	Hot Dust-obscured Galaxies with Excess Blue Light. Astrophysical Journal, 2020, 897, 112.	4.5	16
43	The Large Dispersion and Scattering of FRB 20190520B Are Dominated by the Host Galaxy. Astrophysical Journal, 2022, 931, 87.	4.5	16
44	FIRST VIEWS OF A NEARBY LIRG: STAR FORMATION AND MOLECULAR GAS IN IRAS 04296+2923. Astronomical Journal, 2010, 140, 1294-1305.	4.7	14
45	Cold molecular gas and free–free emission from hot, dust-obscured galaxies at z â^¼ 3. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1565-1578.	4.4	12
46	THE INFRARED PROPERTIES OF SOURCES MATCHED IN THE <i>WISE</i> ALL-SKY AND <i>HERSCHEL</i> ATLAS SURVEYS. Astrophysical Journal Letters, 2012, 750, L18.	8.3	11
47	WISE J233237.05–505643.5: A DOUBLE-PEAKED, BROAD-LINED ACTIVE GALACTIC NUCLEUS WITH A SPIRAL-SHAPED RADIO MORPHOLOGY. Astrophysical Journal, 2013, 779, 41.	4. 5	11
48	LOCATING THE YOUNGEST H II REGIONS IN M82 WITH 7 mm CONTINUUM MAPS. Astronomical Journal, 2009, 137, 4655-4669.	4.7	10
49	THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT <i>z</i> > 7. Astrophysical Journal, 2012, 749, 88.	4.5	10
50	THE CIRCUMNUCLEAR STAR FORMATION ENVIRONMENT OF NGC 6946: Br γ AND H ₂ RESULTS FROM KECK INTEGRAL FIELD SPECTROSCOPY. Astrophysical Journal, 2013, 776, 70.	4.5	10
51	Kinematics and star formation of high-redshift hot dust-obscured quasars as seen by ALMA. Astronomy and Astrophysics, 2021, 654, A37.	5.1	10
52	PROPERTIES OF INTERSTELLAR MEDIUM IN INFRARED-BRIGHT QSOs PROBED BY [O i] 63 μm AND [C ii] 158 μi EMISSION LINES*. Astrophysical Journal, 2016, 824, 146.	n 4.5	9
53	Supermassive binary black hole evolution can be traced by a small SKA pulsar timing array. Physical Review D, 2020, 102, .	4.7	9
54	The environments of luminous radio-WISE selected infrared galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 514-528.	4.4	8

#	Article	IF	CITATIONS
55	Deep Simultaneous Limits on Optical Emission from FRB 20190520B by 24.4 fps Observations with Tomo-e Gozen. Astrophysical Journal, 2022, 931, 109.	4.5	8
56	The 2.4 \hat{l} /4m Galaxy Luminosity Function As Measured Using WISE. I. Measurement Techniques. Astronomical Journal, 2017, 153, 189.	4.7	5
57	The 2.4 νm Galaxy Luminosity Function as Measured Using WISE. III. Measurement Results. Astrophysical Journal, 2018, 866, 45.	4.5	3
58	SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01. Astrophysical Journal, 2011, 743, 198.	4. 5	2
59	The Contribution of Galaxies to the 3.4 \hat{l} 4m Cosmic Infrared Background as Measured Using WISE. Astrophysical Journal, 2019, 887, 207.	4.5	2
60	The black hole masses of extremely luminous radio- <i>WISE</i> selected galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1527-1548.	4.4	2
61	The 2.4 νm Galaxy Luminosity Function as Measured Using WISE. II. Sample Selection. Astrophysical Journal, 2018, 866, 44.	4.5	1
62	The Potential of Detecting Radio-flaring Ultracool Dwarfs at L band in the FAST Drift-scan Survey. Research in Astronomy and Astrophysics, 2022, 22, 065013.	1.7	1
63	An exploration of how training set composition bias in machine learning affects identifying rare objects. Astronomy and Computing, 2022, 40, 100617.	1.7	1
64	Deconvolution of local surface response from surface topography in optical profilometry by a dual-scan method., 0,,.		0
65	Mid-infrared [NeII] Imaging of Young Massive Star Clusters Near Galactic Nuclei. Proceedings of the International Astronomical Union, 2015, 12, 161-162.	0.0	O