Gerard S B Lebon

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6887968/publications.pdf
Version: 2024-02-01

Cavitation in thermoplastic melts: New insights into ultrasound-assisted fibre-impregnation.
Composites Part B: Engineering, 2022, 229, 109480.

Effect of Flow Management on Ultrasonic Melt Processing in a Launder upon DC Casting. Minerals, Metals and Materials Series, 2022, , 649-654.

On the governing fragmentation mechanism of primary intermetallics by induced cavitation.
Ultrasonics Sonochemistry, 2021, 70, 105260.

Ultrasonic Melt Treatment in a DC Casting Launder: The Role of Melt Processing Temperature.
Ultrasonic Melt Treatment in a DC Casting Launder: The
Minerals, Metals and Materials Series, 2021, , 850-857.
0.41

5 Characterization of shock waves in power ultrasound. Journal of Fluid Mechanics, 2021, 915, .
$3.4 \quad 34$
$6 \quad$ Multiphysics Modelling of Ultrasonic Melt Treatment in the Hot-Top and Launder during Direct-Chill
Casting: Path to Indirect Microstructure Simulation. Metals, 2021, 11, 674.
$7 \quad \begin{aligned} & \text { Numerical modelling and experimental validation of the effect of ultrasonic melt treatment in a } \\ & \text { direct-chill cast AA6008 alloy billet. Journal of Materials Research and Technology, 2021, 12, 1582-1596. }\end{aligned}$

New insights into sono-exfoliation mechanisms of graphite: In situ high-speed imaging studies and acoustic measurements. Materials Today, 2021, 49, 10-22.
14.236

Scale up design study on process vessel dimensions for ultrasonic processing of water and liquid
$9 \quad$ aluminium. Ultrasonics Sonochemistry, 2021, 76, 105647.

Effect of Temperature and Acoustic Pressure During Ultrasound Liquid-Phase Processing of Graphite in Water. Jom, 2021, 73, 3745-3752.

Mechanisms of ultrasonic de-agglomeration of oxides through in-situ high-speed observations and
acoustic measurements. Ultrasonics Sonochemistry, 2021, 79, 105792.

In-situ observations and acoustic measurements upon fragmentation of free-floating intermetallics
12 under ultrasonic cavitation in water. Ultrasonics Sonochemistry, 2021, 80, 105820.
8.2

23

Numerical modelling of melt-conditioned direct-chill casting. Applied Mathematical Modelling, 2020,
$13 \quad \begin{gathered}\text { Numerical mode } \\ 77,1310-1330 .\end{gathered}$
4.2

29

Structure Refinement Upon Ultrasonic Melt Treatment in a DC Casting Launder. Jom, 2020, 72, 4071-4081.
1.9

Numerical Assessment of In-Line Rotorâ€"Stator Mixers in High-Shear Melt Conditioning (HSMC)
Technology. Jom, 2020, 72, 4092-4100.
1.9

Ultrasonic exfoliation of graphene in water: A key parameter study. Carbon, 2020, 168, 737-747.
10.3

76

Improving Ultrasonic Melt Treatment Efficiency Through Flow Management: Acoustic Pressure
Measurements and Numerical Simulations. Minerals, Metals and Materials Series, 2020, , 981-987.
$0.4 \quad 7$
Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic
streaming. Ultrasonics Sonochemistry, 2019, 55, 243-255.
Acoustic Cavitation Measurements and Modeling in Liquid Aluminum. Minerals, Metals and Materials
Series, 2019, , 1533-1538.
Series, 2019, , 1533-1538.
22 Fundamental studies of ultrasonic melt processing. Ultrasonics Sonochemistry, 2019, 52, 455-467.
8.2
Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single
splats. Ultrasonics Sonochemistry, 2019, 52, 336-343.
24 Experimental and numerical investigation of acoustic pressures in different liquids. Ultrasonics Sonochemistry, 2018, 42, 411-421.
8.2
Ultrafast synchrotron X-ray imaging studies of microstructure fragmentation in solidification under
7.9

[^0]Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of
38 molten aluminium. Materials and Design, 2016, 90, 979-983.
7.0

82

Synchrotron radiographic studies of ultrasonic melt processing of metal matrix nano composites.
Materials Letters, 2016, 164, 484-487.
2.6

Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Alâ€" 0.4 Ti
1.5

53
alloy. Journal of Crystal Growth, 2016, 435, 24-30.

Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an
advanced cavitometer. Journal of Materials Processing Technology, 2016, 229, 582-586.
6.3

60

A High-Order Acoustic Cavitation Model for the Treatment of a Moving Liquid Metal Volume.
Minerals, Metals and Materials Series, 2016, , 135-142.
$0.4 \quad 1$
Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong
acoustic field. Physical Review E, 2015, 92, 043004.
44 In Situ Synchrotron Radiography and Spectrum Analysis of Transient Cavitation Bubbles in Molten
Aluminium Alloy. Physics Procedia, 2015, 70, 841-845.

Comparison between low-order and high-order acoustic pressure solvers for bubbly media
computations. Journal of Physics: Conference Series, 2015, 656, 012134.

Comparison of cavitation intensity in water and in molten aluminium using a high-temperature
46 cavitometer. Journal of Physics: Conference Series, 2015, 656, 012120.
0.4

5

> Application of the "Full Cavitation Model" to the fundamental study of cavitation in liquid metal processing. IOP Conference Series: Materials Science and Engineering, 2015, 72, 052050.
0.6

Effect of Input Power and Temperature on the Cavitation Intensity During the Ultrasonic Treatment of Molten Aluminium. Transactions of the Indian Institute of Metals, 2015, 68, 1023-1026.
1.5

7

[^0]: Coupling acoustic cavitation and solidification in the modeling of light alloy melt ultrasonic treatment. , 2016, , .

