Zhaojian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6887842/publications.pdf

Version: 2024-02-01

471061 454577 1,031 58 17 30 citations h-index g-index papers 61 61 61 743 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Plasmonic Refractive Index Sensor with High Figure of Merit Based on Concentric-Rings Resonator. Sensors, 2018, 18, 116.	2.1	139
2	Ultra-compact broadband polarization beam splitter with strong expansibility. Photonics Research, 2018, 6, 574.	3.4	59
3	Near-infrared tunable metalens based on phase change material Ge2Sb2Te5. Scientific Reports, 2019, 9, 5368.	1.6	57
4	Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials. Nanophotonics, 2020, 9, 159-166.	2.9	57
5	Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface. Optics Express, 2020, 28, 34079.	1.7	52
6	The novel graphene metasurfaces based on split-ring resonators for tunable polarization switching and beam steering at terahertz frequencies. Carbon, 2019, 154, 350-356.	5.4	50
7	All-optical multi-channel switching at telecommunication wavelengths based on tunable plasmon-induced transparency. Optics Communications, 2018, 425, 196-203.	1.0	43
8	Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons. Scientific Reports, 2017, 7, 15836.	1.6	42
9	Metasurface Based on Inverse Design for Maximizing Solar Spectral Absorption. Advanced Optical Materials, 2021, 9, 2100575.	3.6	42
10	Plasmonic Filter and Demultiplexer Based on Square Ring Resonator. Applied Sciences (Switzerland), 2018, 8, 462.	1.3	32
11	Tunable Duplex Metalens Based on Phase-Change Materials in Communication Range. Nanomaterials, 2019, 9, 993.	1.9	31
12	Ultra-compact, efficient and high-polarization-extinction-ratio polarization beam splitters based on photonic anisotropic metamaterials. Optics Express, 2022, 30, 538.	1.7	27
13	Active control of broadband plasmon-induced transparency in a terahertz hybrid metal–graphene metamaterial. RSC Advances, 2018, 8, 27746-27753.	1.7	26
14	Actively tunable terahertz electromagnetically induced transparency analogue based on vanadium-oxide-assisted metamaterials. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	25
15	All-optical switch and logic gates based on hybrid silicon-Ge ₂ Sb ₂ Te ₅ metasurfaces. Applied Optics, 2019, 58, 7392.	0.9	25
16	Infrared Plasmonic Sensing with Anisotropic Two-Dimensional Material Borophene. Nanomaterials, 2021, 11, 1165.	1.9	20
17	Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express, 2022, 30, 18250.	1.7	20
18	Ultra-compact beam splitter and filter based on a graphene plasmon waveguide. Applied Optics, 2017, 56, 9814.	0.9	18

#	Article	IF	Citations
19	High quality factor electromagnetically induced transparency-like effect in coupled guided-mode resonant systems. Optics Express, 2019, 27, 7712.	1.7	18
20	A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Applied Sciences (Switzerland), 2020, 10, 1750.	1.3	16
21	Continuously tunable metasurfaces controlled by single electrode uniform bias-voltage based on nonuniform periodic rectangular graphene arrays. Optics Express, 2020, 28, 29306.	1.7	15
22	Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials. Materials, 2018, 11, 941.	1.3	14
23	Actively Tunable Metalens Array Based on Patterned Phase Change Materials. Applied Sciences (Switzerland), 2019, 9, 4927.	1.3	13
24	Double Spectral Electromagnetically Induced Transparency Based on Double-Bar Dielectric Grating and Its Sensor Application. Applied Sciences (Switzerland), 2020, 10, 3033.	1.3	13
25	Topological multipolar corner state in a supercell metasurface and its interplay with two-dimensional materials. Photonics Research, 2022, 10, 855.	3.4	13
26	Tunable plasmon-induced transparency and slow light in terahertz chipscale semiconductor plasmonic waveguides. Journal Physics D: Applied Physics, 2020, 53, 315101.	1.3	12
27	Plasmon-induced transparency based on aperture-coupled cascade resonators without gap. Superlattices and Microstructures, 2018, 123, 138-143.	1.4	11
28	Tunable Graphene-Based Plasmon-Induced Transparency Based on Edge Mode in the Mid-Infrared Region. Nanomaterials, 2019, 9, 448.	1.9	11
29	Double Electromagnetically Induced Transparency and Its Slow Light Application Based on a Guided-Mode Resonance Grating Cascade Structure. Materials, 2020, 13, 3710.	1.3	11
30	A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application. Physica Scripta, 2019, 94, 125511.	1.2	10
31	Inverse-designed single-mode and multi-mode nanophotonic waveguide switches based on hybrid silicon-Ge2Sb2Te5 platform. Results in Physics, 2021, 26, 104384.	2.0	9
32	Lattice topological edge and corner modes of photonic crystal slabs. Journal of Optics (United) Tj ETQq0 0 0 rgB	Г/Qyerlock	₹ 10 Tf 50 22
33	Optical absorption of suspended graphene based metal plasmonic grating in the visible range. Materials Research Express, 2018, 5, 055801.	0.8	7
34	Multiband notch filter based guided-mode resonance for mid-infrared spectroscopy. Optics Communications, 2019, 445, 64-68.	1.0	7
35	Chipscale plasmonic modulators and switches based on metal–insulator–metal waveguides with Ge2Sb2Te5. Journal of Nanophotonics, 2019, 13, 1.	0.4	7
36	Tunable multilayer-graphene-based broadband metamaterial selective absorber. Applied Optics, 2020, 59, 11137.	0.9	7

#	Article	IF	Citations
37	Tailoring bound states in the continuum in symmetric photonic crystal slabs by coupling strengths. Optics Express, 2022, 30, 8049.	1.7	7
38	Polarization-insensitive ultra-short waveguide taper. Optics Letters, 2021, 46, 5027.	1.7	6
39	Direct Coupling Strategy in Plasmonic Nanocircuits for Low Loss and Easy Fabrication. Plasmonics, 2020, 15, 761-767.	1.8	5
40	Image representation of structure color based on edge detection algorithm. Results in Physics, 2020, 19, 103441.	2.0	5
41	Hybridization-induced resonances with high-quality factor in a plasmonic chipscale ring-disk nanocavity. Waves in Random and Complex Media, 2021, 31, 2327-2336.	1.6	5
42	Controlled and tunable plasmon-induced transparency based on graphene metasurfaces in atmospheric windows. Diamond and Related Materials, 2022, 127, 109210.	1.8	5
43	Plasmonics Induced Multifunction Optical Device via Hoof-Shaped Subwavelength Structure. Applied Sciences (Switzerland), 2020, 10, 2713.	1.3	4
44	Optical Pulling Using Chiral Metalens as a Photonic Probe. Nanomaterials, 2021, 11, 3376.	1.9	4
45	Tunable Infrared Detection, Radiative Cooling and Infrared-Laser Compatible Camouflage Based on a Multifunctional Nanostructure with Phase-Change Material. Nanomaterials, 2022, 12, 2261.	1.9	4
46	Polarization modulation based on the hybrid waveguide of graphene sandwiched structure. Europhysics Letters, 2017, 119, 54001.	0.7	3
47	Sub-wavenumber linewidth mid-infrared notch filter enabled by a dual-period plasmonic structure. Optics Communications, 2018, 428, 152-156.	1.0	3
48	Implementation of radiative cooling with an inverse-designed selective emitter. Optics Communications, 2021, 497, 127209.	1.0	3
49	Collective topological corner modes in all-dielectric photonic crystal supercell arrays. Optics Letters, 2022, 47, 1642.	1.7	3
50	Ultra-Compact and Ultra-Broadband Polarization-Insensitive Mach–Zehnder Interferometer in Silicon-on-Insulator Platform for Quantum Internet Application. Photonics, 2021, 8, 455.	0.9	2
51	Plasmon-induced light absorption in mid-infrared based on hexagonal-shape graphene. Materials Research Express, 2019, 6, 125602.	0.8	1
52	Ultra-confined low-loss surface phonon polaritonic resonances in periodically patterned monolayer hexagonal boron nitride. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114897.	1.3	1
53	Numerical Study of a Polarization Selective Visual Optical Switch. Applied Sciences (Switzerland), 2020, 10, 5246.	1.3	0
54	Design of a SOI-based quantum interferometer with ultralow fiber-to-fiber insertion loss. Optics Communications, 2021, 493, 126814.	1.0	0

#	Article	IF	CITATIONS
55	Gold reflective metallic gratings with high absorption efficiency. , 2017, , .		O
56	Plasmonic triple-wavelength demultiplexing structure based on metal-insulator-metal waveguides side-coupled with nanoring cavities. Hongwai Yu Jiguang Gongcheng/Infrared and Laser Engineering, 2019, 48, 221001.	0.1	0
57	Tunable subwavelength slit lenses based on the manipulation of refractive index of medium. , 2019, , .		0
58	Tunable, angle and polarization-insensitive broadband absorber. , 2020, , .		0