Ruizi Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6887780/publications.pdf Version: 2024-02-01

		430442	454577
30	1,744	18	30
papers	1,744 citations	h-index	g-index
31	31	31	2099
all docs	docs citations	times ranked	citing authors

RILIZI PENC

#	Article	IF	CITATIONS
1	Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chemical Society Reviews, 2016, 45, 2583-2602.	18.7	513
2	Engineering a 3D DNA-Logic Gate Nanomachine for Bispecific Recognition and Computing on Target Cell Surfaces. Journal of the American Chemical Society, 2018, 140, 9793-9796.	6.6	214
3	Fluorescence Resonance Energy Transfer-Based DNA Nanoprism with a Split Aptamer for Adenosine Triphosphate Sensing in Living Cells. Analytical Chemistry, 2017, 89, 10941-10947.	3.2	117
4	Entropy Beacon: A Hairpin-Free DNA Amplification Strategy for Efficient Detection of Nucleic Acids. Analytical Chemistry, 2015, 87, 11714-11720.	3.2	106
5	DNA-Based Dynamic Reaction Networks. Trends in Biochemical Sciences, 2018, 43, 547-560.	3.7	79
6	DNA-based artificial molecular signaling system that mimics basic elements of reception and response. Nature Communications, 2020, 11, 978.	5.8	72
7	Facile Assembly/Disassembly of DNA Nanostructures Anchored on Cell-Mimicking Giant Vesicles. Journal of the American Chemical Society, 2017, 139, 12410-12413.	6.6	68
8	Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems. Analytical Chemistry, 2016, 88, 1850-1855.	3.2	65
9	Artificial Signal Feedback Network Mimicking Cellular Adaptivity. Journal of the American Chemical Society, 2019, 141, 6458-6461.	6.6	49
10	A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues. Analytica Chimica Acta, 2016, 937, 136-142.	2.6	47
11	Protocells programmed through artificial reaction networks. Chemical Science, 2020, 11, 631-642.	3.7	45
12	A Cascade Signaling Network between Artificial Cells Switching Activity of Synthetic Transmembrane Channels. Journal of the American Chemical Society, 2021, 143, 232-240.	6.6	42
13	Multicolor Twoâ€Photon Nanosystem for Multiplexed Intracellular Imaging and Targeted Cancer Therapy. Angewandte Chemie - International Edition, 2021, 60, 12569-12576.	7.2	40
14	Engineering DNA on the Surface of Upconversion Nanoparticles for Bioanalysis and Therapeutics. ACS Nano, 2021, 15, 17257-17274.	7.3	39
15	Hierarchical Fabrication of DNA Wireframe Nanoarchitectures for Efficient Cancer Imaging and Targeted Therapy. ACS Nano, 2020, 14, 17365-17375.	7.3	30
16	G-Quadruplex-Induced Liquid–Liquid Phase Separation in Biomimetic Protocells. Journal of the American Chemical Society, 2021, 143, 11036-11043.	6.6	27
17	Biomimetic Carriers Based on Giant Membrane Vesicles for Targeted Drug Delivery and Photodynamic/Photothermal Synergistic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 43811-43819.	4.0	26
18	Catalytic self-assembly of a DNA dendritic complex for efficient gene silencing. Chemical Communications, 2016, 52, 1413-1415.	2.2	24

Ruizi Peng

#	Article	IF	CITATIONS
19	Hierarchical Self-Assembly of Cholesterol-DNA Nanorods. Bioconjugate Chemistry, 2019, 30, 1845-1849.	1.8	21
20	Generating Giant Membrane Vesicles from Live Cells with Preserved Cellular Properties. Research, 2019, 6523970.	2.8	20
21	Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
22	A Magnetocatalytic Propelled Cobalt–Platinum@Graphene Navigator for Enhanced Tumor Penetration and Theranostics. CCS Chemistry, 2022, 4, 2382-2395.	4.6	16
23	Spherically Directed Synthesis and Enhanced Cellular Internalization of Metal-Crosslinked DNA Micelles. CheM, 2019, 5, 913-928.	5.8	14
24	Functional nucleic acid-based cell imaging and manipulation. Science China Chemistry, 2021, 64, 1817-1825.	4.2	13
25	New Insights from Chemical Biology: Molecular Basis of Transmission, Diagnosis, and Therapy of SARS-CoV-2. CCS Chemistry, 2021, 3, 1501-1528.	4.6	12
26	Programming DNA Tube Circumference by Tile Offset Connection. Journal of the American Chemical Society, 2019, 141, 19529-19532.	6.6	11
27	A minireview on multiparameter-activated nanodevices for cancer imaging and therapy. Nanoscale, 2020, 12, 21571-21582.	2.8	8
28	Multicolor Twoâ€Photon Nanosystem for Multiplexed Intracellular Imaging and Targeted Cancer Therapy. Angewandte Chemie, 2021, 133, 12677-12684.	1.6	6
29	<i>In situ</i> DNA Assembly on the Surfaces of Nanosized Exosomes Based on Molecular Recognition. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1083-1084.	2.2	1
30	Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks. Angewandte Chemie, 2022, 134, .	1.6	1