Richard J Weaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/688756/publications.pdf

Version: 2024-02-01

623734 794594 1,078 19 14 19 citations g-index h-index papers 21 21 21 1431 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nature Reviews Drug Discovery, 2020, 19, 131-148.	46.4	153
2	The hepatotoxic fluoroquinolone trovafloxacin disturbs TNF- and LPS-induced p65 nuclear translocation in vivo and in vitro. Toxicology and Applied Pharmacology, 2020, 391, 114915.	2.8	6
3	A ligand-induced structural change in fatty acid–binding protein 1 is associated with potentiation of peroxisome proliferator–activated receptor α agonists. Journal of Biological Chemistry, 2019, 294, 3720-3734.	3.4	17
4	Today's Challenges to De-Risk and Predict Drug Safety in Human "Mind-the-Gap― Toxicological Sciences, 2019, 167, 307-321.	3.1	78
5	Trovafloxacin-Induced Liver Injury: Lack in Regulation of Inflammation by Inhibition of Nucleotide Release and Neutrophil Movement. Toxicological Sciences, 2019, 167, 385-396.	3.1	13
6	Kinetic characterization of bile salt transport by human NTCP (SLC10A1). Toxicology in Vitro, 2018, 46, 189-193.	2.4	16
7	Human OATP1B1 (SLCO1B1) transports sulfated bile acids and bile salts with particular efficiency. Toxicology in Vitro, 2018, 52, 189-194.	2.4	12
8	Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 767-782.	3. 3	30
9	Stem cell–derived models to improve mechanistic understanding and prediction of human drugâ€induced liver injury. Hepatology, 2017, 65, 710-721.	7.3	54
10	A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Archives of Toxicology, 2017, 91, 1385-1400.	4.2	85
11	Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans. BioMed Research International, 2016, 2016, 1-20.	1.9	44
12	Early Alterations of Bile Canaliculi Dynamics and the Rho Kinase/Myosin Light Chain Kinase Pathway Are Characteristics of Drug-Induced Intrahepatic Cholestasis. Drug Metabolism and Disposition, 2016, 44, 1780-1793.	3.3	45
13	Evidence-based selection of training compounds for use in the mechanism-based integrated prediction of drug-induced liver injury in man. Archives of Toxicology, 2016, 90, 2979-3003.	4.2	50
14	Development and use of in vitro alternatives to animal testing by the pharmaceutical industry 1980â€"2013. Toxicology Research, 2015, 4, 1297-1307.	2.1	49
15	Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication. Toxicological Sciences, 2015, 147, 412-424.	3.1	73
16	Mechanism-Based Markers of Drug-Induced Liver Injury to Improve the Physiological Relevance and Predictivity of <i>In Vitro</i> Models. Applied in Vitro Toxicology, 2015, 1, 175-186.	1.1	5
17	PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells. Toxicology and Applied Pharmacology, 2014, 276, 73-81.	2.8	61
18	In Vitro Approach to Assess the Potential for Risk of Idiosyncratic Adverse Reactions Caused by Candidate Drugs. Chemical Research in Toxicology, 2012, 25, 1616-1632.	3.3	197

#	ŧ	Article	IF	CITATIONS
1	.9	Risk assessment and mitigation strategies for reactive metabolites in drug discovery and development. Chemico-Biological Interactions, 2011, 192, 65-71.	4.0	90