Radoslav R Adzic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6887337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-Step Facile Synthesis of High-Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst. ACS Applied Energy Materials, 2022, 5, 5245-5255.	5.1	11
2	High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 5525-5531.	11.2	22
3	Formic Acid Electrooxidation on Pt or Pd Monolayer on Transition-Metal Single Crystals: A First-Principles Structure Sensitivity Analysis. ACS Catalysis, 2021, 11, 5294-5309.	11.2	15
4	Modification of the Coordination Environment of Active Sites on MoC for Highâ€Efficiency CH ₄ Production. Advanced Energy Materials, 2021, 11, 2100044.	19.5	21
5	Platinum Monolayer Electrocatalysts. , 2020, , .		4
6	Copper Electrodeposition from Deep Eutectic Solvents—Voltammetric Studies Providing Insights into the Role of Substrate: Platinum vs Glassy Carbon. Journal of Physical Chemistry B, 2020, 124, 5465-5475.	2.6	24
7	Enhancing Oxygen Reduction Performance of Pt Monolayer Catalysts by Pd(111) Nanosheets on WNi Substrates. ACS Catalysis, 2020, 10, 4290-4298.	11.2	30
8	Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation. Topics in Catalysis, 2020, 63, 742-749.	2.8	17
9	Catalytic Properties of Pt Monolayer Electrocatalysts. , 2020, , 101-152.		0
10	Direct 12-Electron Oxidation of Ethanol on a Ternary Au(core)-PtIr(Shell) Electrocatalyst. Journal of the American Chemical Society, 2019, 141, 9629-9636.	13.7	143
11	Platinum Monolayer Electrocatalysts for Methanol Oxidation. Journal of the Electrochemical Society, 2019, 166, F3300-F3304.	2.9	14
12	Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to <i>in situ</i> XAFS characterization. Nanoscale, 2019, 11, 20301-20306.	5.6	33
13	Innenrücktitelbild: Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation (Angew. Chem. 8/2019). Angewandte Chemie, 2019, 131, 2547-2547.	2.0	7
14	Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angewandte Chemie - International Edition, 2019, 58, 2321-2325.	13.8	543
15	Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angewandte Chemie, 2019, 131, 2343-2347.	2.0	95
16	Infrared spectroelectrochemical configurations for in situ measurements. Journal of the Serbian Chemical Society, 2019, 84, 1235-1247.	0.8	0
17	Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts. Ultrasonics Sonochemistry, 2018, 41, 427-434.	8.2	47
18	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	10.3	22

RADOSLAV R ADZIC

#	Article	IF	CITATIONS
19	Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2018, 165, J3222-J3230.	2.9	34
20	Au-Doped Stable L1 ₀ Structured Platinum Cobalt Ordered Intermetallic Nanoparticle Catalysts for Enhanced Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 3771-3777.	5.1	16
21	(Invite) Insights in Measuring Particle Size of Multiatomic Nanoparticles By XAS. ECS Meeting Abstracts, 2018, , .	0.0	0
22	Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. Journal of the American Chemical Society, 2017, 139, 7310-7317.	13.7	51
23	Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction. Chemical Communications, 2017, 53, 1660-1663.	4.1	46
24	Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganeseâ€Oxynitride Nanocatalysts on Graphene. ChemSusChem, 2017, 10, 68-73.	6.8	28
25	Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316.	3.0	9
26	Controllable Deposition of Platinum Layers on Oxide Surfaces for the Synthesis of Fuel Cell Catalysts. ChemElectroChem, 2016, 3, 1635-1640.	3.4	4
27	Transition Metal Nitride Coated with Atomic Layers of Pt as a Low-Cost, Highly Stable Electrocatalyst for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 1575-1583.	13.7	348
28	Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction. Catalysis Science and Technology, 2016, 6, 2435-2450.	4.1	29
29	Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons. Journal of Materials Chemistry A, 2016, 4, 5869-5876.	10.3	17
30	Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst. Catalysts, 2015, 5, 1321-1332.	3.5	33
31	Multifunctional Ultrathin Pd _{<i>x</i>} Cu _{1–<i>x</i>} and Ptâ^¼Pd _{<i>x</i>} Cu _{1–<i>x</i>} One-Dimensional Nanowire Motifs for Various Small Molecule Oxidation Reactions. ACS Applied Materials & Interfaces, 2015, 7, 26145-26157.	8.0	64
32	DFT Study of Oxygen Reduction Reaction on Os/Pt Core–Shell Catalysts Validated by Electrochemical Experiment. ACS Catalysis, 2015, 5, 1568-1580.	11.2	70
33	Ruthenium nanoparticles mounted on multielement co-doped graphene: an ultra-high-efficiency cathode catalyst for Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 11224-11231.	10.3	61
34	In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 12597-12609.	13.7	46
35	Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core. ACS Catalysis, 2015, 5, 6764-6772.	11.2	197
36	Metalizing carbon nanotubes with Pd–Pt core–shell nanowires enhances electrocatalytic activity and stability in the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2014, 18, 1171-1179.	2.5	19

RADOSLAV R ADZIC

#	Article	IF	CITATIONS
37	Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications, 2014, 5, 5185.	12.8	134
38	Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 591-594.	10.3	83
39	Evaluation of Phase Segregation in Ternary Pt-Rh-SnO2 Catalysts Prepared from the Vapor Phase. Microscopy and Microanalysis, 2014, 20, 462-463.	0.4	18
40	Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2013, 110, 267-272.	5.2	70
41	Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts. Topics in Catalysis, 2013, 56, 1059-1064.	2.8	17
42	Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction. Journal of the Serbian Chemical Society, 2013, 78, 1983-1992.	0.8	3
43	Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 817-824.	11.2	94
44	Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry, 2012, 22, 16824.	6.7	91
45	Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols. Journal of Physical Chemistry Letters, 2012, 3, 3480-3485.	4.6	132
46	Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 5297-5304.	30.8	156
47	Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties. Electrocatalysis, 2012, 3, 163-169.	3.0	72
48	Oxygen Reduction Reaction on Platinum-Terminated "Onion-structured―Alloy Catalysts. Electrocatalysis, 2012, 3, 192-202.	3.0	25
49	Platinum Supported on NbRu _{<i>y</i>} O _{<i>z</i>} as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3043-3056.	3.1	43
50	Truncated Ditetragonal Gold Prisms as Nanofacet Activators of Catalytic Platinum. Journal of the American Chemical Society, 2011, 133, 18074-18077.	13.7	66
51	Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Electrocatalysis, 2011, 2, 134-140.	3.0	31
52	Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction: Improvements Induced by Surface and Subsurface Modifications of Cores. Advances in Physical Chemistry, 2011, 2011, 1-16.	2.0	30
53	Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles. Electrocatalysis, 2010, 1, 213-223.	3.0	40
54	Role of Surface Steps of Pt Nanoparticles on the Electrochemical Activity for Oxygen Reduction. Journal of Physical Chemistry Letters, 2010, 1, 1316-1320.	4.6	121

RADOSLAV R ADZIC

#	Article	IF	CITATIONS
55	Enhancing Oxygen Reduction Reaction Activity via Pdâ^'Au Alloy Sublayer Mediation of Pt Monolayer Electrocatalysts. Journal of Physical Chemistry Letters, 2010, 1, 3238-3242.	4.6	150
56	Hydrogen Oxidation Reaction on Pt in Acidic Media:  Adsorption Isotherm and Activation Free Energies. Journal of Physical Chemistry C, 2007, 111, 12425-12433.	3.1	56
57	Electrodeposition of Pt onto RuO ₂ (110) Single-Crystal Surface. Journal of Physical Chemistry C, 2007, 111, 15306-15311.	3.1	13
58	Infrared spectroscopy of bare single crystal and nano-particle covered surfaces. Journal of the Serbian Chemical Society, 2006, 71, 945-948.	0.8	1
59	Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angewandte Chemie - International Edition, 2005, 44, 2132-2135.	13.8	1,015
60	Adsorption Configuration and Local Ordering of Silicotungstate Anions on Ag(100) Electrode Surfaces. Journal of the American Chemical Society, 2001, 123, 8838-8843.	13.7	42
61	Recent Developments in the Electrocatalysis of the O2 Reduction Reaction. , 0, , 271-315.		10