Guido Viscardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6887075/publications.pdf

Version: 2024-02-01

87401 64407 7,736 180 40 83 citations h-index g-index papers 188 188 188 9465 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescent trifluoromethylated imidazo[1,5-a]pyridines and their application in luminescent down-shifting conversion. Journal of Luminescence, 2022, 242, 118529.	1.5	8
2	Thermochromic photoluminescent 3D printed polymeric devices based on copper-iodide clusters. Additive Manufacturing, 2022, 49, 102504.	1.7	4
3	Synthesis, Stereochemical and Photophysical Properties of Functionalized Thiahelicenes. Catalysts, 2022, 12, 366.	1.6	5
4	Imidazo[1,5-a]pyridine-Based Fluorescent Probes: A Photophysical Investigation in Liposome Models. Molecules, 2022, 27, 3856.	1.7	4
5	Functional Dyes in Polymeric 3D Printing: Applications and Perspectives. , 2021, 3, 1-17.		58
6	Methoxy-substituted copper complexes as possible redox mediators in dye-sensitized solar cells. New Journal of Chemistry, 2021, 45, 15303-15311.	1.4	11
7	ZnO Nanostructures Application in Electrochemistry: Influence of Morphology. Journal of Physical Chemistry C, 2021, 125, 1472-1482.	1.5	71
8	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2000823.	3.1	65
9	Impact of P3HT Regioregularity and Molecular Weight on the Efficiency and Stability of Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2021, 9, 5061-5073.	3.2	29
10	Unveiling the interaction between PDT active squaraines with ctDNA: A spectroscopic study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119224.	2.0	6
11	Dopant-Free All-Organic Small-Molecule HTMs for Perovskite Solar Cells: Concepts and Structure–Property Relationships. Energies, 2021, 14, 2279.	1.6	18
12	Polymeric Dopant-Free Hole Transporting Materials for Perovskite Solar Cells: Structures and Concepts towards Better Performances. Polymers, 2021, 13, 1652.	2.0	24
13	Solid-Phase Synthesis of Asymmetric Cyanine Dyes. Current Organic Chemistry, 2021, 25, 1739-1754.	0.9	1
14	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2170074.	3.1	16
15	Strategies to increase the quantum yield: Luminescent methoxylated imidazo[1,5-a]pyridines. Dyes and Pigments, 2021, 192, 109455.	2.0	11
16	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
17	Hydrogel Electrolytes Based on Xanthan Gum: Green Route towards Stable Dye-Sensitized Solar Cells. Nanomaterials, 2020, 10, 1585.	1.9	103
18	Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochimica Acta, 2019, 302, 31-37.	2.6	81

#	Article	IF	Citations
19	Solid silica nanoparticles as carriers of fluorescent squaraine dyes in aqueous media: Toward a molecular engineering approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 123-130.	2.3	9
20	Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Solar Energy, 2018, 163, 251-255.	2.9	90
21	Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study. Journal of Pharmaceutical Analysis, 2018, 8, 37-44.	2.4	16
22	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5- a]pyridine – Part 2. Dyes and Pigments, 2017, 143, 284-290.	2.0	30
23	Designing Squaraines to Control Charge Injection and Recombination Processes in NiOâ€based Dyeâ€Sensitized Solar Cells. ChemSusChem, 2017, 10, 2385-2393.	3.6	20
24	Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chemistry, 2017, 19, 1043-1051.	4.6	98
25	Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences for performance and charge transfer dynamics. Physical Chemistry Chemical Physics, 2017, 19, 27670-27681.	1.3	11
26	A new ruthenium black dye design with improved optical properties for transparent dye sensitized solar devices. Dalton Transactions, 2017, 46, 16390-16393.	1.6	9
27	Water based surfactant-assisted synthesis of thienylpyridines and thienylbipyridine intermediates. Dyes and Pigments, 2017, 137, 468-479.	2.0	4
28	Nonviral gene-delivery by highly fluorinated gemini bispyridinium surfactant-based DNA nanoparticles. Journal of Colloid and Interface Science, 2017, 487, 182-191.	5.0	31
29	Photoanode/Electrolyte Interface Stability in Aqueous Dyeâ€Sensitized Solar Cells. Energy Technology, 2017, 5, 300-311.	1.8	68
30	One pot synthesis of low cost emitters with large Stokes' shift. Dyes and Pigments, 2017, 137, 152-164.	2.0	50
31	ZnO Nanowire Application in Chemoresistive Sensing: A Review. Nanomaterials, 2017, 7, 381.	1.9	60
32	Dicyanovinyl and Cyano-Ester Benzoindolenine Squaraine Dyes: The Effect of the Central Functionalization on Dye-Sensitized Solar Cell Performance. Energies, 2016, 9, 486.	1.6	25
33	Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies, 2016, 9, 384.	1.6	97
34	Terpyridine and Quaterpyridine Complexes as Sensitizers for Photovoltaic Applications. Materials, 2016, 9, 137.	1.3	50
35	Polymethine Dyes in Hybrid Photovoltaics: Structure–Properties Relationships. European Journal of Organic Chemistry, 2016, 2016, 2244-2259.	1.2	84
36	Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells. Chemical Science, 2016, 7, 4880-4890.	3.7	90

#	Article	IF	CITATIONS
37	Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	7
38	Is it possible to study the kinetic parameters of interaction between PNA and parallel and antiparallel DNA by stopped-flow fluorescence?. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 296-302.	1.7	1
39	Solution Thermodynamics of highly fluorinated gemini bispyridinium surfactants for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 236-242.	2.3	9
40	Electrocatalytic reduction of CO ₂ by thiophene-substituted rhenium(<scp>i</scp>) complexes and by their polymerized films. Dalton Transactions, 2016, 45, 14678-14688.	1.6	43
41	Facile synthesis of novel blue light and large Stoke shift emitting tetradentate polyazines based on imidazo[1,5-a]pyridine. Dyes and Pigments, 2016, 128, 96-100.	2.0	37
42	Synthesis, Physicochemical Characterization, and Interaction with DNA of Longâ€Alkylâ€Chain Gemini Pyridinium Surfactants. ChemPlusChem, 2015, 80, 952-962.	1.3	12
43	Multivariate analysis applied to Raman mapping of dye-functionalized carbon nanotubes: a novel approach to support the rational design of functional nanostructures. Analyst, The, 2015, 140, 5754-5763.	1.7	3
44	Microwave-Assisted Synthesis of Near-Infrared Fluorescent Indole-Based Squaraines. Organic Letters, 2015, 17, 3306-3309.	2.4	62
45	Mucin–drugs interaction: The case of theophylline, prednisolone and cephalexin. Bioorganic and Medicinal Chemistry, 2015, 23, 6581-6586.	1.4	29
46	The different kinetic behavior of two potential photosensitizers for PDT. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 38-43.	2.0	19
47	Is the counterion responsible for the unusual thermodynamic behaviour of the aqueous solutions of gemini bispyridinium surfactants?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 249-254.	2.3	11
48	Nonviral Gene Delivery: Gemini Bispyridinium Surfactant-Based DNA Nanoparticles. Journal of Physical Chemistry B, 2014, 118, 13183-13191.	1.2	27
49	New Formulation of Functionalized Bioactive Glasses to Be Used as Carriers for the Development of pH-Stimuli Responsive Biomaterials for Bone Diseases. Langmuir, 2014, 30, 4703-4715.	1.6	19
50	Panchromatic symmetrical squaraines: a step forward in the molecular engineering of low cost blue-greenish sensitizers for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2014, 16, 24173-24177.	1.3	41
51	Conjugation of amino-bioactive glasses with 5-aminofluorescein as probe molecule for the development of pH sensitive stimuli-responsive biomaterials. Journal of Materials Science: Materials in Medicine, 2014, 25, 2243-2253.	1.7	8
52	A Simple Synthetic Route to Obtain Pure <i>Trans</i> â€Ruthenium(II) Complexes for Dyeâ€Sensitized Solar Cell Applications. ChemSusChem, 2013, 6, 2170-2180.	3.6	27
53	Blocking layer optimisation of poly(3-hexylthiopene) based Solid State Dye Sensitized Solar Cells. Organic Electronics, 2013, 14, 1882-1890.	1.4	38
54	Near-infrared Sensitization in Dye-sensitized Solar Cells. Chimia, 2013, 67, 129-135.	0.3	35

#	Article	IF	Citations
55	Symmetric vs. asymmetric squaraines as photosensitisers in mesoscopic injection solar cells: a structure–property relationship study. Chemical Communications, 2012, 48, 2782.	2.2	79
56	Enhancing the efficiency of a dye sensitized solar cell due to the energy transfer between CdSe quantum dots and a designed squaraine dye. RSC Advances, 2012, 2, 2748.	1.7	56
57	Molecular Engineering of Hybrid Dye–Silica Fluorescent Nanoparticles: Influence of the Dye Structure on the Distribution of Fluorophores and Consequent Photoemission Brightness. Chemistry of Materials, 2012, 24, 2792-2801.	3.2	35
58	Synthesis, optical characterization and crystal and molecular X-ray structure of a phenylazojulolidine derivative. Dyes and Pigments, 2012, 92, 1177-1183.	2.0	6
59	A transient kinetic study between signaling proteins: the case of the MEK–ERK interaction. Chemical Science, 2011, 2, 1804.	3.7	8
60	Design and Development of Novel Linker for PbS Quantum Dots/TiO ₂ Mesoscopic Solar cell. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3264-3267.	4.0	28
61	Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase. Journal of Inorganic Biochemistry, 2011, 105, 321-327.	1.5	59
62	Rollâ€toâ€Roll Atmospheric Plasma Treatment: A Green and Efficient Process to Improve the Hydrophilicity of a PET Surface. ChemSusChem, 2010, 3, 591-596.	3.6	15
63	Iridium and ruthenium complexes covalently bonded to carbon surfaces by means of electrochemical oxidation of aromatic amines. Catalysis Today, 2010, 158, 22-28.	2.2	20
64	Highly bright and photostable cyanine dye-doped silica nanoparticles for optical imaging: Photophysical characterization and cell tests. Dyes and Pigments, 2010, 84, 121-127.	2.0	89
65	A sensitive and practical fluorimetric test for CNT acidic site determination. Chemical Communications, 2010, 46, 1443.	2.2	16
66	Synthesis and Characterization of Highly Fluorinated Gemini Pyridinium Surfactants. European Journal of Organic Chemistry, 2009, 2009, 3167-3177.	1.2	30
67	Determination of banned Sudan dyes in food samples by molecularly imprinted solid phase extractionâ€high performance liquid chromatography. Journal of Separation Science, 2009, 32, 3292-3300.	1.3	67
68	Fluorescence anisotropy analysis of protein–antibody interaction. Dyes and Pigments, 2009, 83, 225-229.	2.0	18
69	Synthesis and properties of cationic surfactants with tuned hydrophylicity. Journal of Colloid and Interface Science, 2009, 340, 269-275.	5.0	40
70	A study of the interaction between fluorescein sodium salt and bovine serum albumin by steady-state fluorescence. Dyes and Pigments, 2009, 80, 307-313.	2.0	132
71	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Dyes and Pigments, 2009, 82, 124-129.	2.0	36
72	The design, synthesis and characterization of a novel acceptor for real time polymerase chain reaction using both computational and experimental approaches. Dyes and Pigments, 2009, 83, 111-120.	2.0	11

#	Article	IF	Citations
73	Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes and Pigments, 2009, 83, 396-402.	2.0	25
74	Hybrid Cyanineâ^'Silica Nanoparticles: Homogeneous Photoemission Behavior of Entrapped Fluorophores and Consequent High Brightness Enhancement. Journal of Physical Chemistry C, 2009, 113, 21048-21053.	1.5	38
75	A mass spectrometric analysis of sensitizer solution used for dye-sensitized solar cell. Inorganica Chimica Acta, 2008, 361, 798-805.	1.2	78
76	Thermodynamics and Biological Properties of the Aqueous Solutions of New Glucocationic Surfactants. Journal of Physical Chemistry B, 2008, 112, 9360-9370.	1.2	14
77	Unusual Behavior of the Aqueous Solutions of Gemini Bispyridinium Surfactants: Apparent and Partial Molar Enthalpies of the Dimethanesulfonates. Journal of Physical Chemistry B, 2008, 112, 12312-12317.	1.2	46
78	Model dyes for optimizing the dyeing of polyamide. Journal of Chemical Technology and Biotechnology, 2007, 51, 243-251.	1.6	0
79	4-Sulfophenylphosphonic Acid:Â A Novel Precursor to Fabricate Polyfunctional Acid Materials. Chemistry of Materials, 2007, 19, 2671-2678.	3.2	19
80	Tethering of Modified Reichardt's Dye on SBA-15 Mesoporous Silica:Â The Effect of the Linker Flexibility. Langmuir, 2007, 23, 2261-2268.	1.6	25
81	Upgrading biomass wastes in chemical technology. Humic acidâ€like matter isolated from compost as chemical auxiliary for textile dyeing. Journal of Chemical Technology and Biotechnology, 2007, 82, 939-948.	1.6	20
82	Thermodynamic properties of aqueous micellar solutions of some new acetylated gluco-cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 129-136.	2.3	7
83	Photophysical properties and computational investigations of tricarbonylrhenium(I)[2-(4-methylpyridin-2-yl)benzo[d]-X-azole]L and tricarbonylrhenium(I)[2-(benzo[d]-X-azol-2-yl)-4-methylquinoline]L derivatives (X=N–CH3, O, or S;) Tj ETQq1 1	0.984314	· rg&T /Overlo
84	Chemicals from Wastes:Â Compost-Derived Humic Acid-like Matter as Surfactant. Environmental Science &	4.6	74
85	Synthesis, Characterization, and DFT-TDDFT Computational Study of a Ruthenium Complex Containing a Functionalized Tetradentate Ligand. Inorganic Chemistry, 2006, 45, 4642-4653.	1.9	167
86	Novel Heptamethine Cyanine Dyes with Large Stokes' Shift for Biological Applications in the Near Infrared. Journal of Fluorescence, 2006, 16, 221-225.	1.3	31
87	Solvent effect on indocyanine dyes: A computational approach. Chemical Physics, 2006, 330, 52-59.	0.9	52
88	Synthesis, Electrochemical and Electrogenerated Chemiluminescence Studies of Ruthenium(II) Bis(2,2′-bipyridyl){2-(4-methylpyridin-2-yl)benzo[d]-X-azole} Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 2839-2849.	1.0	23
89	One-pot synthesis and characterization of HMS silica carrying Disperse-Red-1 (DR1) covalently bonded to the inner surface. Comptes Rendus Chimie, 2005, 8, 655-661.	0.2	7
90	Synthesis and Properties of New Glucocationic Surfactants:Â Model Structures for Marking Cationic Surfactants with Carbohydrates. Journal of Organic Chemistry, 2005, 70, 9857-9866.	1.7	53

#	Article	IF	Citations
91	First Evaluation of the Thermodynamic Properties for Spheres to Elongated Micelles Transition of Some Propanediyl-α,ï‰-bis(dimethylalkylammonium bromide) Surfactants in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1744-1749.	1.2	27
92	Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 2005, 127, 16835-16847.	6.6	2,645
93	Matching molecular and optical multipoles in photoisomerizable nonlinear systems. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 1276.	0.9	12
94	Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248, 1317-1328.	9.5	241
95	Kinetic evidence for the solubilization of pyridine-2-azo-p-dimethylaniline in alkanediyl-α,ï‰-bis(dimethylcetylammonium nitrate) surfactants. Role of the spacer chain length. New Journal of Chemistry, 2004, 28, 793-799.	1.4	12
96	Mechanism of the Optical Response of Mesoporous Silica Impregnated with Reichardt's Dye to NH3and Other Gases. Journal of Physical Chemistry B, 2004, 108, 16617-16620.	1.2	25
97	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> à€benzimidazole derivatives. Part I. Xâ€Ray structural analysis. Journal Heterocyclic Chemistry, 2003, 40, 129-133.	of 1.4	6
98	2â€(4â€methylpyridinâ€2â€yl)â€1 <i>H</i> à€benzimidazole derivatives. Part II, ^l H nmr characterizati Journal of Heterocyclic Chemistry, 2003, 40, 649-654.	어. ₄	5
99	Thermodynamic properties of aqueous micellar solutions of 1-methyl-4-octylpyridinium halides. Thermochimica Acta, 2003, 397, 199-208.	1.2	2
100	Structural characterisation of Nitrazine Yellow by NMR spectroscopy. Dyes and Pigments, 2003, 57, 87-95.	2.0	8
101	Gemini Pyridinium Surfactants:Â Synthesis and Conductometric Study of a Novel Class of Amphiphiles1. Journal of Organic Chemistry, 2003, 68, 7651-7660.	1.7	109
102	Covalent bonding of Disperse Red 1 in HMS silica: synthesis and characterization Studies in Surface Science and Catalysis, 2003, , 375-378.	1.5	1
103	Design, Synthesis, and Application of Amphiphilic Ruthenium Polypyridyl Photosensitizers in Solar Cells Based on Nanocrystalline TiO2Films. Langmuir, 2002, 18, 952-954.	1.6	238
104	Thermodynamic Properties of the Aqueous Solution of Potassium Salts of Some 4-((Alkylcarbonyl)amino)-2-hydroxybenzoic Acids at 298 and 313 K. Journal of Colloid and Interface Science, 2002, 255, 410-416.	5.0	5
105	Adsorption of cationic ?gemini? surfactants at the TiO2/solution interface. Surface and Interface Analysis, 2002, 34, 652-656.	0.8	7
106	Chemichromic azodye from 2,4-dinitrobenzenediazonium o-benzenedisulfonimide and γ-acid for monitoring blood parameters: structural study and synthesis optimisation. Dyes and Pigments, 2002, 54, 131-140.	2.0	8
107	Microcrystalline cellulose suspensions: effects on the surface tension at the air–water boundary. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176, 239-244.	2.3	4
108	Novel azobenzene derivatives containing a glucopyranoside moiety. Part I: synthesis, characterisation and mutagenic properties. Dyes and Pigments, 2000, 46, 29-36.	2.0	6

#	Article	IF	Citations
109	Novel azobenzene derivatives containing a glucopyranoside moiety. Part II: dyeing properties. Dyes and Pigments, 2000, 46, 37-42.	2.0	3
110	Effects of additives on the dyeing of nylon-6 with dyes containing hydrophobic and hydrophilic moieties. Dyes and Pigments, 2000, 47, 177-188.	2.0	21
111	Properties of novel azodyes containing powerful acceptor groups and thiophene moiety. Synthetic Metals, 2000, 115, 213-217.	2.1	64
112	Role of dye structure in photoinduced reorientation of dye-doped liquid crystals. Journal of Chemical Physics, 2000, 113, 10361-10366.	1.2	47
113	Synthesis and Surface and Antimicrobial Properties of Novel Cationic Surfactants. Journal of Organic Chemistry, 2000, 65, 8197-8203.	1.7	105
114	Reactivity and effects of cyclodextrins in textile dyeing. Dyes and Pigments, 1999, 42, 143-147.	2.0	50
115	Experimental Electron-Density Study of 4-Cyanoimidazolium-5-olate at 120 K. Acta Crystallographica Section B: Structural Science, 1998, 54, 66-72.	1.8	8
116	Structural Characterization of 4-Cyanoimidazolium-5-olate, 4,4-Diphenyl-5-imidazolinone, and 4,5-Dicyanoimidazole. A Novel Mesoionic Compound and Decoding of Intermolecular Hydrogen Bonds. Journal of Organic Chemistry, 1997, 62, 7037-7043.	1.7	15
117	Three New Organic Scintillators with Large Stokes Shifts. Applied Spectroscopy, 1997, 51, 1193-1199.	1.2	6
118	On the photochemical behaviour of some diarylpyrazolines. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 143-148.	2.0	12
119	Voltammetric behaviour of heterocyclic systems. Pyridylâ€substituted benzimidazoles, benzoxazoles and benzothiazoles. Journal of Heterocyclic Chemistry, 1997, 34, 1479-1485.	1.4	9
120	Selective recovery of uranium(VI) from aqueous acid solutions using micellar ultrafiltration. Analyst, The, 1996, 121, 1401.	1.7	22
121	Effect of the Counterion on Thermodynamic Properties of Aqueous Micellar Solutions of 1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl) Pyridinium Halidesll. Apparent and Partial Molar Enthalpies and Osmotic Coefficients at 313 K. Journal of Colloid and Interface Science, 1996, 184, 147-154.	5.0	3
122	Novel heterocyclic ligands with tuned hydrophobicity. Journal of Heterocyclic Chemistry, 1996, 33, 1195-1200.	1.4	6
123	Effect of the Counterion on Thermodynamic Properties of Aqueous Micellar Solutions of 1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl) Pyridinium Halides. Journal of Colloid and Interface Science, 1996, 182, 549-557.	5.0	46
124	Effect of the Counterion on Thermodynamic Properties of Aqueous Micellar Solutions of 1-(3,3,4,4,5,5,6,6,6-Nonafluorohexyl) Pyridinium Halides. Journal of Colloid and Interface Science, 1996, 184, 147-154.	5.0	15
125	Adsorption of 1-alkyl-4-methylpyridinium salts at solid-liquid and water-air interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 135-144.	2.3	9
126	Azo dyes derived from 4(5)-cyano-5(4)-hydroxyimidazole. Dyes and Pigments, 1995, 29, 103-115.	2.0	6

#	Article	IF	CITATIONS
127	DEVELOPMENTS IN DYEING TECHNOLOGY BASED ON MICROEMULSION SYSTEMS. Journal of Dispersion Science and Technology, 1995, 16, 51-68.	1.3	8
128	Amphiphilic dyes., 1995,, 177-212.		2
129	Thermodynamic properties of aqueous micellar solutions of N-(1H,1H,2H,2H perfluorooctyl)pyridinium chloride and N-(1H,1H,2H,2H perfluorodecyl)pyridinium chloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 84, 59-70.	2.3	17
130	Preconcentration and selective metal ion separation using chelating micelles. Talanta, 1994, 41, 1261-1267.	2.9	14
131	ORGANOSULPHUR PHOSPHORUS ACID COMPOUNDS. PART 5. BIPHENYL-4,4′-DIPHOSPHONO-2,6,2′-TRISULPHONIC ACID. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 86, 123-128.	0.8	6
132	ORGANOSULPHUR PHOSPHORUS ACID COMPOUNDS. PART 4. FLUOROBENZYLPHOSPHONO-SULPHONIC ACIDS. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 86, 145-155.	0.8	8
133	4- Tert-butyl-1-(4'-dimethylamino-benzylideneamino)pyridinium perchlorate (BDPP): a novel fluorescent dye. Dyes and Pigments, 1993, 23, 73-78.	2.0	36
134	Spectral behaviour of linked heterocyclic systems and related dyes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 1379-1393.	0.1	6
135	Influence of electronic and steric effects and hydrogen bonding on 1H and 13C spectral parameters in azo compounds. Journal of Structural Chemistry, 1993, 33, 844-852.	0.3	1
136	Hydrogen bonding, protonation and twisting in the singlet excited state of some 2â€(4â€Aminophenyl)pyridoâ€oxaâ€, â€thiaâ€, and â€imidazoles. Journal of Heterocyclic Chemistry, 1993, 30, 10)41 ⁴ 1044.	23
137	Preconcentration of aniline derivatives from aqueous solutions using micellar-enhanced ultrafiltration. Analyst, The, 1993, 118, 23.	1.7	32
138	THE ROLE OF COSURFACTANT AND OIL IN THE DYEING OF CELLULOSE - ACETATE. Journal of Dispersion Science and Technology, 1993, 14, 17-33.	1.3	5
139	Vegetable composts for sea water uranium extraction. Journal of Chemical Technology and Biotechnology, 1993, 58, 215-222.	1.6	2
140	Structure and molecular weight of catenapoly [diphenoxy-?5-phosphazene] obtained from catenapoly (diphenoxy-?5-phosphazene) in very strong acid medium. Journal of Inorganic and Organometallic Polymers, 1992, 2, 421-430.	1.5	6
141	Synthesis and photophysical characterization of highly luminescent complexes of Ru(II) containing 4,4′-di-(p-carboxyphenyl)-2,2′-bipyridine. Inorganica Chimica Acta, 1992, 198-200, 831-839.	1.2	45
142	Pyridyl-substituted azobenzene disperse dyes. Dyes and Pigments, 1992, 19, 291-304.	2.0	3
143	Relationships between spectroscopic and voltammetric parameters of azobenzene dyes. Dyes and Pigments, 1992, 20, 1-11.	2.0	4
144	Disperse and cationic azo dyes from heterocyclic intermediates. Dyes and Pigments, 1992, 19, 69-79.	2.0	3

#	Article	IF	CITATIONS
145	Preconcentration and removal of iron(III) from aqueous media using micellar-enhanced ultrafiltration. Colloids and Surfaces, 1992, 63, 291-300.	0.9	35
146	Comparative study of different structural descriptors and variable selection approaches using partial least squares in quantitative structure-activity relationships. Chemometrics and Intelligent Laboratory Systems, 1992, 14, 225-233.	1.8	11
147	Assembled systems [Xâ€azolopyridine] [quinoline]. Bases and salts. Journal of Heterocyclic Chemistry, 1992, 29, 185-192.	1.4	3
148	Heterocyclic intermediates for the synthesis of disperse and cationic dyes. Journal of Heterocyclic Chemistry, 1992, 29, 835-839.	1.4	4
149	Micellization properties of zwitterionic surfactants derived from nicotinic acid in aqueous solutions. Langmuir, 1991, 7, 23-29.	1.6	6
150	Dye-surfactant interactions and their applications. Accounts of Chemical Research, 1991, 24, 98-103.	7.6	53
151	1H NMR spectra of a series of disperse azo dyes. Magnetic Resonance in Chemistry, 1991, 29, 747-748.	1.1	11
152	MICROEMULSIONS AND THEIR POTENTIAL APPLICATIONS IN DYEING PROCESSES. Journal of Dispersion Science and Technology, 1991, 12, 257-271.	1.3	7
153	Assembled systems [picoline]â€{Xâ€azolopyridine]: Bases, salts and polymethine dyes. Journal of Heterocyclic Chemistry, 1990, 27, 1777-1785.	1.4	3
154	Heterocyclic Xâ€azolopyridine intermediates. Journal of Heterocyclic Chemistry, 1990, 27, 1825-1829.	1.4	7
155	Apparent and partial molar enthalpies of potassium 4-((hexylcarbonyl)amino)-2-hydroxybenzoate aqueous micellar solutions. Thermochimica Acta, 1990, 162, 277-290.	1.2	7
156	Aqueous micellar solutions of some N-alkylnicotinamide and N-alkylpyridinium halide surfactants: Apparent and partial molar enthalpies. Thermochimica Acta, 1990, 168, 143-159.	1.2	25
157	Heterocyclic hydrophobic dyes and their interactions with surfactant and oil-in-water microemulsions. Colloids and Surfaces, 1990, 48, 47-56.	0.9	6
158	NMR investigation of azo disperse dyes. Dyes and Pigments, 1990, 13, 71-80.	2.0	20
159	Lightfastness modelling of azo dyes bearing heteroaromatic substituents. Journal of Chemical Technology and Biotechnology, 1990, 48, 303-312.	1.6	4
160	Oxazole ring cleavage in the course of the synthesis of heterocyclic azo dyes. Journal of Heterocyclic Chemistry, 1989, 26, 77-80.	1.4	5
161	Aminophenylâ€Xâ€azolopyridines as precursors of heterocyclic azo dyes. Journal of Heterocyclic Chemistry, 1989, 26, 289-292.	1.4	19
162	Amphiphilic acid dyes. Dyeing properties and interactions with surface-active systems. Colloids and Surfaces, 1989, 35, 251-260.	0.9	3

#	Article	IF	Citations
163	Disperse and cationic dyes from aminophenyl-X-azolo-pyridines. Dyes and Pigments, 1989, 11, 163-172.	2.0	14
164	Disperse and cationic dyes derived from 2-(meta-and para-Aminophenyl)imidazo [4,5-b] pyridine. Dyes and Pigments, 1989, 10, 97-110.	2.0	8
165	Technical properties and photofading of disperse heterocyclic azo dyes. Dyes and Pigments, 1989, 10, 269-283.	2.0	10
166	Dyeing of nylon 66 with disperse dyes. An optimization study. Dyes and Pigments, 1989, 10, 23-31.	2.0	6
167	Heterocyclic monoazo dyes for polyamide, derived from 4-alkylamido-2-hydroxybenzoic acids. Dyes and Pigments, 1988, 9, 295-304.	2.0	10
168	2â€(methylpyridyl)â€Xâ€azolo[4,5â€ <i>b</i>)pyridines: Bases, salts and polymethine dyes. Journal of Heterocyclic Chemistry, 1988, 25, 1675-1680.	1.4	7
169	CATIONIC VESICLE PRECURSORS AS RETARDING AND LEVELLING AGENTS FOR THE DYEING OF ACRYLIC FIBRES. Journal of Dispersion Science and Technology, 1988, 9, 309-318.	1.3	2
170	VESICLE PRECURSORS IN THE DYEING OF POLYESTER WITH DISPERSE DYES. Journal of Dispersion Science and Technology, 1988, 9, 75-87.	1.3	20
171	Dyeing properties of monoazo disperse dyes derived from 4â€alkylamidosalicylic acids: equilibrium study. Coloration Technology, 1988, 104, 125-130.	0.1	18
172	Quaternary salts and polymethine dyes from 2â€(methylpyridyl)â€Xâ€azolo[4,5â€ <i>b</i>)pyridine. Journal of Heterocyclic Chemistry, 1987, 24, 1053-1060.	1.4	9
173	Partial least-squares modelling of dye fastness to light. Analytica Chimica Acta, 1986, 191, 445-450.	2.6	16
174	Long chain heterocyclic dyes. Part one. Hydrophobic structures. Journal of Heterocyclic Chemistry, 1986, 23, 209-221.	1.4	21
175	Long chain heterocyclic dyes. Part Two. Surface active dyes. Journal of Heterocyclic Chemistry, 1985, 22, 1727-1734.	1.4	8
176	Methylpyridylbenzâ€Xâ€azoles. ^l H NMR Study. Journal of Heterocyclic Chemistry, 1984, 21, 561-568.	1.4	11
177	Methylpyridylbenzimidazoles. Part I. Mono, bis-quaternary salts and related polymethyne dyes. Journal of Heterocyclic Chemistry, 1983, 20, 23-28.	1.4	15
178	Methylpyridylbenzimidazoles. Part II. Bridged mono and bisâ€quaternary salts. Journal of Heterocyclic Chemistry, 1983, 20, 29-32.	1.4	9
179	Near Infra-Red Dyes in Dye-Sensitized Solar Cells: from Panchromatic Absorption to Completely Transparent DSSCs., 0,,.		O
180	Effect of Out-of-Plane Alkyl Chains in Dye-Sensitized Solar Cell Efficiency: a Structure-Property Relationship in Novel Perimidine-Based Squaraine Dyes., 0,,.		0