
Brunet-India Manola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 2006, 111, .	3.3	2,884
2	The Twentieth Century Reanalysis Project. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1-28.	2.7	2,785
3	Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2098-2118.	3.3	1,029
4	Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2876-2908.	2.7	441
5	Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. Journal of Geophysical Research, 2005, 110, .	3.3	433
6	Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. Journal of Geophysical Research, 2006, 111, .	3.3	347
7	Changes in extreme temperature and precipitation in the Arab region: longâ€ŧerm trends and variability related to <scp>ENSO</scp> and <scp>NAO</scp> . International Journal of Climatology, 2014, 34, 581-592.	3.5	288
8	Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Climate Dynamics, 2007, 29, 251-275.	3.8	273
9	Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. Journal of Geophysical Research, 2009, 114, .	3.3	239
10	Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Global and Planetary Change, 2013, 100, 295-307.	3.5	238
11	Temporal and spatial temperature variability and change over Spain during 1850–2005. Journal of Geophysical Research, 2007, 112, .	3.3	189
12	Changes in North American extremes derived from daily weather data. Journal of Geophysical Research, 2008, 113, .	3.3	187
13	Development of an Updated Global Land In Situâ€Based Data Set of Temperature and Precipitation Extremes: HadEX3. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032263.	3.3	182
14	Daily Mean Sea Level Pressure Reconstructions for the European–North Atlantic Region for the Period 1850–2003. Journal of Climate, 2006, 19, 2717-2742.	3.2	165
15	The development of a new dataset of Spanish Daily Adjusted Temperature Series (SDATS) (1850–2003). International Journal of Climatology, 2006, 26, 1777-1802.	3.5	136
16	Chapter 1 Mediterranean climate variability over the last centuries: A review. Developments in Earth and Environmental Sciences, 2006, 4, 27-148.	0.1	105
17	The International Surface Pressure Databank version 2. Geoscience Data Journal, 2015, 2, 31-46.	4.4	102
18	Trends in frequency indices of daily precipitation over the Iberian Peninsula during the last century. Journal of Geophysical Research, 2011, 116, .	3.3	85

2

Brunet-India Manola

#	Article	IF	CITATIONS
19	Data rescue initiatives: bringing historical climate data into the 21st century. Climate Research, 2011, 47, 29-40.	1.1	82
20	Chapter 3 Relations between variability in the Mediterranean region and mid-latitude variability. Developments in Earth and Environmental Sciences, 2006, , 179-226.	0.1	71
21	Unlocking Pre-1850 Instrumental Meteorological Records: A Global Inventory. Bulletin of the American Meteorological Society, 2019, 100, ES389-ES413.	3.3	68
22	Estimating 750 years of temperature variations and uncertainties in the Pyrenees by tree-ring reconstructions and climate simulations. Climate of the Past, 2012, 8, 919-933.	3.4	56
23	The MeteoMet project $\hat{a} \in$ metrology for meteorology: challenges and results. Meteorological Applications, 2015, 22, 820-829.	2.1	49
24	WMO World Record Lightning Extremes: Longest Reported Flash Distance and Longest Reported Flash Duration. Bulletin of the American Meteorological Society, 2017, 98, 1153-1168.	3.3	49
25	A roadmap to climate data rescue services. Geoscience Data Journal, 2018, 5, 28-39.	4.4	47
26	Temperature extreme records: World Meteorological Organization metrological and meteorological evaluation of the 54.0°C observations in Mitribah, Kuwait and Turbat, Pakistan in 2016/2017. International Journal of Climatology, 2019, 39, 5154-5169.	3.5	41
27	The minimization of the <i>screen bias</i> from ancient Western Mediterranean air temperature records: an exploratory statistical analysis. International Journal of Climatology, 2011, 31, 1879-1895.	3.5	40
28	World Meteorological Organization Assessment of the Purported World Record 58°C Temperature Extreme at El Azizia, Libya (13 September 1922). Bulletin of the American Meteorological Society, 2013, 94, 199-204.	3.3	36
29	A rescued dataset of sub-daily meteorological observations for Europe and the southern Mediterranean region, 1877–2012. Earth System Science Data, 2018, 10, 1613-1635.	9.9	31
30	A research progress review on regional extreme events. Advances in Climate Change Research, 2018, 9, 161-169.	5.1	29
31	New World Meteorological Organization Certified Megaflash Lightning Extremes for Flash Distance (709 km) and Duration (16.73 s) Recorded From Space. Geophysical Research Letters, 2020, 47, e2020GL088888.	4.0	29
32	Two hundred years of environmental change in Picos de Europa National Park inferred from sediments of Lago Enol, northern Iberia. Journal of Paleolimnology, 2011, 46, 453-467.	1.6	18
33	A historical surface climate dataset from station observations in Mediterranean North Africa and Middle East areas. Geoscience Data Journal, 2014, 1, 121-128.	4.4	18
34	Data sources for rescuing the rich heritage of <scp>M</scp> editerranean historical surface climate data. Geoscience Data Journal, 2014, 1, 61-73.	4.4	17
35	WMO Evaluation of Two Extreme High Temperatures Occurring in February 2020 for the Antarctic Peninsula Region. Bulletin of the American Meteorological Society, 2021, 102, E2053-E2061.	3.3	17
36	Benthic foraminifera as indicators of habitat change in anthropogenically impacted coastal wetlands of the Ebro Delta (NE Iberian Peninsula). Marine Pollution Bulletin, 2015, 101, 163-173.	5.0	16

#	Article	IF	CITATIONS
37	Efficiency of Time Series Homogenization: Method Comparison with 12 Monthly Temperature Test Datasets. Journal of Climate, 2021, 34, 2877-2891.	3.2	15
38	Traceability of Ground-Based Air-Temperature Measurements: A Case Study on the Meteorological Observatory of Moncalieri (Italy). International Journal of Thermophysics, 2015, 36, 589-601.	2.1	7
39	New WMO Certified Megaflash Lightning Extremes for Flash Distance and Duration Recorded from Space. Bulletin of the American Meteorological Society, 2022, 103, 257-261.	3.3	7
40	The Tosontsengel Mongolia world record seaâ€level pressure extreme: spatial analysis of elevation bias in adjustmentâ€toâ€seaâ€level pressures. International Journal of Climatology, 2015, 35, 2968-2977.	3.5	5
41	WMO evaluation of northern hemispheric coldest temperature: â^ 69.6 °C at Klinck, Greenland, 22 December 1991. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 21-29.	2.7	4
42	Evaluating Highest-Temperature Extremes in the Antarctic. Eos, 2017, , .	0.1	3