Grégory Chagnon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886799/publications.pdf

Version: 2024-02-01

64 papers 1,885 citations

361045 20 h-index 42 g-index

73 all docs

73 docs citations

73 times ranked

1538 citing authors

#	Article	IF	CITATIONS
1	A theory of network alteration for the Mullins effect. Journal of the Mechanics and Physics of Solids, 2002, 50, 2011-2028.	2.3	276
2	Hyperelastic Energy Densities for Soft Biological Tissues: A Review. Journal of Elasticity, 2015, 120, 129-160.	0.9	191
3	Mechanical experimental characterisation and numerical modelling of an unfilled silicone rubber. Polymer Testing, 2008, 27, 765-777.	2.3	181
4	Influence of the temperature on the mechanical behaviour of filled and unfilled silicone rubbers. Polymer Testing, 2013, 32, 492-501.	2.3	115
5	On the relevance of Continuum Damage Mechanics as applied to the Mullins effect in elastomers. Journal of the Mechanics and Physics of Solids, 2004, 52, 1627-1650.	2.3	114
6	Development of new constitutive equations for the Mullins effect in rubber using the network alteration theory. International Journal of Solids and Structures, 2006, 43, 6817-6831.	1.3	88
7	Induced anisotropy by the Mullins effect in filled silicone rubber. Mechanics of Materials, 2012, 50, 70-80.	1.7	75
8	Analysis of the isotropic models of the Mullins effect based on filled silicone rubber experimental results. Mechanics of Materials, 2010, 42, 841-851.	1.7	68
9	A comprehensive thermo-viscoelastic experimental investigation of Ecoflex polymer. Polymer Testing, 2020, 86, 106478.	2.3	59
10	A Comparison of the Hart-Smith Model with Arruda-Boyce and Gent Formulations for Rubber Elasticity. Rubber Chemistry and Technology, 2004, 77, 724-735.	0.6	57
11	Membrane Curvatures and Stress-strain Full Fields of Axisymmetric Bulge Tests from 3D-DIC Measurements. Theory and Validation on Virtual and Experimental results. Experimental Mechanics, 2012, 52, 865-880.	1.1	56
12	Cold drawing of 316L stainless steel thin-walled tubes: Experiments and finite element analysis. International Journal of Mechanical Sciences, 2013, 70, 69-78.	3.6	40
13	On the stress recovery behaviour of Ecoflex silicone rubbers. International Journal of Mechanical Sciences, 2021, 206, 106624.	3. 6	36
14	Permanent set and stress-softening constitutive equation applied to rubber-like materials and soft tissues. Acta Mechanica, 2014, 225, 1685-1698.	1.1	32
15	Theory and identification of a constitutive model of induced anisotropy by the Mullins effect. Journal of the Mechanics and Physics of Solids, 2014, 63, 29-39.	2.3	31
16	Experimental characterization and constitutive modeling of the biomechanical behavior of male human urethral tissues validated by histological observations. Biomechanics and Modeling in Mechanobiology, 2018, 17, 939-950.	1.4	27
17	Experimental investigation and theoretical modelling of induced anisotropy during stress-softening of rubber. International Journal of Solids and Structures, 2016, 97-98, 554-565.	1.3	25
18	Mechanical behaviour׳s evolution of a PLA- b -PEG- b -PLA triblock copolymer during hydrolytic degradation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 288-300.	1.5	24

#	Article	IF	Citations
19	A non-linear viscoelastic model to describe the mechanical behavior's evolution of biodegradable polymers during hydrolytic degradation. Polymer Degradation and Stability, 2016, 131, 145-156.	2.7	22
20	An original architectured NiTi silicone rubber structure for biomedical applications. Materials Science and Engineering C, 2014, 45, 184-190.	3.8	21
21	Anisotropy and Clausius-Clapeyron relation for forward and reverse stress-induced martensitic transformations in polycrystalline NiTi thin walled tubes. Mechanics of Materials, 2020, 146, 103392.	1.7	21
22	Modeling the Mullins effect in elastomers swollen by palm biodiesel. International Journal of Engineering Science, 2015, 95, 1-22.	2.7	20
23	Radiopaque poly($\hat{l}\mu$ -caprolactone) as additive for X-ray imaging of temporary implantable medical devices. RSC Advances, 2015, 5, 84125-84133.	1.7	20
24	Influence of processing parameters on the macroscopic mechanical behavior of PVA hydrogels. Materials Science and Engineering C, 2017, 75, 769-776.	3.8	18
25	Evaluation of a biodegradable <scp>PLA–PEG–PLA</scp> internal biliary stent for liver transplantation: in vitro degradation and mechanical properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 410-419.	1.6	18
26	Anisotropic Mullins stress softening of a deformed silicone holey plate. Mechanics Research Communications, 2013, 49, 36-43.	1.0	17
27	A conical mandrel tube drawing test designed to assess failure criteria. Journal of Materials Processing Technology, 2014, 214, 347-357.	3.1	17
28	Study of electropulse heat treatment of cold worked NiTi wire: From uniform to localised tensile behaviour. Journal of Materials Processing Technology, 2016, 227, 244-250.	3.1	15
29	NUMERICAL ANALYSIS OF THE WALL STRESS IN ABDOMINAL AORTIC ANEURYSM: INFLUENCE OF THE MATERIAL MODEL NEAR-INCOMPRESSIBILITY. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250005.	0.3	13
30	Design of polyurethane fibers: Relation between the spinning technique and the resulting fiber topology. Journal of Applied Polymer Science, 2019, 136, 47706.	1.3	13
31	Using thickness-shear mode quartz resonator for characterizing the viscoelastic properties of PDMS during cross-linking, from the liquid to the solid state and at different temperatures. Sensors and Actuators A: Physical, 2018, 280, 107-113.	2.0	12
32	Biomechanical behaviour of human bile duct wall and impact of cadaveric preservation processes Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 291-300.	1.5	12
33	Mechanical characterization and comparison of different NiTi/silicone rubber interfaces. International Journal of Adhesion and Adhesives, 2014, 48, 67-74.	1.4	11
34	Hyperelasticity with rate-independent microsphere hysteresis model for rubberlike materials. Computational Materials Science, 2014, 90, 89-98.	1.4	10
35	Characterizing Transformation Phenomena and Elastic Moduli of Austenite and Oriented Martensite of Superelastic Thin NiTi Wire through Isothermal Dynamic Mechanical Analysis. Journal of Materials Engineering and Performance, 2019, 28, 4667-4679.	1.2	10
36	Strain Gauges Based 3D Shape Monitoring of Beam Structures Using Finite Width Gauge Model. Experimental Techniques, 2019, 43, 599-611.	0.9	10

#	Article	IF	Citations
37	Experimental investigations of the human oesophagus: anisotropic properties of the embalmed muscular layer under large deformation. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1169-1186.	1.4	10
38	Tube Drawing Process Modelling By A Finite Element Analysis. AIP Conference Proceedings, 2007, , .	0.3	8
39	A generic three-dimensional static force distribution basis for a medical needle inserted into soft tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 156-170.	1.5	8
40	Extension of classical viscoelastic models in large deformation to anisotropy and stress softening. International Journal of Non-Linear Mechanics, 2014, 61, 54-64.	1.4	8
41	Lightâ€Induced Bulk Architecturation of PDMS Membranes. Macromolecular Materials and Engineering, 2016, 301, 1151-1157.	1.7	7
42	In-Vivo Soft Tissues Mechanical Characterization: Volume-Based Aspiration Method Validated on Silicones. Experimental Mechanics, 2019, 59, 251-261.	1.1	7
43	New pressure ulcers dressings to alleviate human soft tissues: A finite element study. Journal of Tissue Viability, 2022, , .	0.9	6
44	Anisotropic large deformation of geometrically architectured unfilled silicone membranes. European Journal of Mechanics, A/Solids, 2015, 50, 87-99.	2.1	5
45	Hyperelasticity Modeling for Incompressible Passive Biological Tissues. , 2017, , 3-30.		5
46	From in vitro evaluation to human postmortem pre-validation of a radiopaque and resorbable internal biliary stent for liver transplantation applications. Acta Biomaterialia, 2020, 106, 70-81.	4.1	5
47	3D small strain large deflection beam shape sensing including poisson effect. Engineering Structures, 2020, 209, 109948.	2.6	4
48	Development and modeling of filled silicone architectured membranes. Meccanica, 2015, 50, 11-24.	1.2	3
49	Mechanical behavior of architectured photosensitive silicone membranes: Experimental data and numerical analysis. Mechanics of Advanced Materials and Structures, 2017, 24, 524-533.	1.5	3
50	Inelastic deformation of highly aligned dry-spun thermoplastic polyurethane elastomer microfibres. Materials Research Express, 2018, 5, 125301.	0.8	3
51	Experimental characterisation and modelling of breast Cooper's ligaments. Biomechanics and Modeling in Mechanobiology, 2022, 21, 1157-1168.	1.4	3
52	Simulation of Drawing of Small Stainless Steel Platinum Medical Tubesâ€"Influence of the Tool Parameters on the Forming Limit. , 2011, , .		2
53	AN OSMOTICALLY INFLATABLE SEAL TO TREAT ENDOLEAKS OF TYPE 1, FOLLOWING ENDOVASCULAR ANEURYSM REPAIR. Journal of Mechanics in Medicine and Biology, 2012, 12, 1250070.	0.3	2
54	Advanced sensors placement for accurate 3D needle shape reconstruction., 2016, 2016, 5132-5135.		2

#	Article	IF	CITATIONS
55	Optimized needle shape reconstruction using experimentally based strain sensors positioning. Medical and Biological Engineering and Computing, 2019, 57, 1901-1916.	1.6	2
56	Using a 3D needle–tissue force distribution basis to optimise the design of an instrumented needle. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16, 320-322.	0.9	1
57	Toward a real-time tracking of a medical deformable needle from strain measurements. , 2013, 2013, 3495-8.		0
58	Anisotropic viscoelastic models in large deformation for architectured membranes. Mechanics of Time-Dependent Materials, 2017, 21, 163-176.	2.3	0
59	Geometry-Based Model for U-Shaped Strain Gauges on Medical Needles. , 2018, 2018, 4269-4272.		0
60	Biostable highly aligned polyurethane fibres for the potential application of small calibre vascular grafting. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1473-1480.	0.5	0
61	From the experimental determination of stress-strain full fields during a bulge test thanks to 3D-DIC technique to the characterization of anisotropic Mullins effect. , 2011, , 259-264.		0
62	The evolution of viscoelastic properties of silicone rubber during cross-linking investigated by thickness-shear mode quartz resonator., 2017,, 405-410.		0
63	A mixed physical-phenomenological approach for the Mullins effect. , 2017, , 237-242.		0
64	Development and Operation of an Experimental System to Measure the Moments Generated in the Finger Joints. Bioengineering, 2022, 9, 184.	1.6	0