Stephen A Boppart

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6886737/stephen-a-boppart-publications-by-year.pdf

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 423
 15,732
 65
 110

 papers
 citations
 h-index
 g-index

 528
 18,961
 4.7
 6.54

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
423	Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation <i>Biomedical Optics Express</i> , 2022 , 13, 1654-1670	3.5	O
422	Label-free metabolic and structural profiling of dynamic biological samples using multimodal optical microscopy with sensorless adaptive optics <i>Scientific Reports</i> , 2022 , 12, 3438	4.9	0
421	Ultra-parallel label-free optophysiology of neural activity. <i>IScience</i> , 2022 , 25, 104307	6.1	1
420	Self-locomotive, antimicrobial microrobot (SLAM) swarm for enhanced biofilm elimination. <i>Biomaterials</i> , 2022 , 121610	15.6	О
419	Evaluating optical coherence tomography for surgical margin assessment of canine mammary tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 697-706	2.5	2
418	Optical coherence tomography imaging of excised canine apocrine gland anal sac adenocarcinoma tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 759-762	2.5	1
417	3D OCT characterization and quantification of refractive indices of bacteria and biofilms with antibiotic interventions 2021 ,		1
416	Development of a Smartphone-Based Skin Simulation Model for Medical Education. <i>Simulation in Healthcare</i> , 2021 , 16, 414-419	2.8	1
415	Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy. <i>Optics Express</i> , 2021 , 29, 37759-37775	3.3	2
414	The feasibility and utility of optical coherence tomography directed histopathology for surgical margin assessment of canine mast cell tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 616-62	.3 ^{2.5}	2
413	Tracking the formation and degradation of fatty-acid-accumulated mitochondria using label-free chemical imaging. <i>Scientific Reports</i> , 2021 , 11, 6671	4.9	1
412	Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. <i>Scientific Reports</i> , 2021 , 11, 5176	4.9	4
411	Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. <i>Biomedical Optics Express</i> , 2021 , 12, 3021-3036	3.5	4
410	Computational adaptive optics for polarization-sensitive optical coherence tomography. <i>Optics Letters</i> , 2021 , 46, 2071-2074	3	1
409	Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. <i>Biosensors</i> , 2021 , 11,	5.9	1
408	The Cholesterol Metabolite 27HC Increases Secretion of Extracellular Vesicles Which Promote Breast Cancer Progression. <i>Endocrinology</i> , 2021 , 162,	4.8	5
407	Compressive sensing for polarization sensitive optical coherence tomography. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 294005	3	3

(2020-2021)

406	Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. <i>Biotechnology Journal</i> , 2021 , 16, e2000629	5.6	1
405	Roadmap on bio-nano-photonics. <i>Journal of Optics (United Kingdom)</i> , 2021 , 23, 073001	1.7	O
404	Inactivation and sensitization of Pseudomonas aeruginosa by microplasma jet array for treating otitis media. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 48	8.2	3
403	Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 4003-4019	3.5	3
402	Synthetic polarization-sensitive optical coherence tomography by deep learning. <i>Npj Digital Medicine</i> , 2021 , 4, 105	15.7	4
401	In vivo dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography. <i>Journal of Biophotonics</i> , 2021 , 14, e202000215	3.1	1
400	Diagnostic accuracy of optical coherence tomography for assessing surgical margins of canine soft tissue sarcomas in observers of different specialties. <i>Veterinary Surgery</i> , 2021 , 50, 111-120	1.7	2
399	Label-Free Multimodal Multiphoton Intravital Imaging. <i>Advances in Experimental Medicine and Biology</i> , 2021 , 3233, 127-146	3.6	
398	Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. <i>Theranostics</i> , 2021 , 11, 3229-3243	12.1	20
397	Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. <i>Theranostics</i> , 2021 , 11, 5620-5633	12.1	9
396	High-speed label-free two-photon fluorescence microscopy of metabolic transients during neuronal activity. <i>Applied Physics Letters</i> , 2021 , 118, 081104	3.4	3
395	Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H. <i>Scientific Reports</i> , 2021 , 11, 3308	4.9	6
394	Intraoperative Label-Free Multimodal Nonlinear Optical Imaging for Point-of-Procedure Cancer Diagnostics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2021 , 27,	3.8	3
393	Diagnostic accuracy of optical coherence tomography for surgical margin assessment of feline injection-site sarcoma. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 632-640	2.5	О
392	Simultaneous 4-phase-shifted full-field optical coherence microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 981-992	3.5	2
391	Efficacy of endotracheal tube suctioning in intubated intensive care unit patients determined by catheter-based optical coherence tomography-a pilot study. <i>Quantitative Imaging in Medicine and Surgery</i> , 2021 , 11, 1-8	3.6	1
390	Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. <i>Quantitative Imaging in Medicine and Surgery</i> , 2020 , 10, 2177-2190	3.6	5
389	Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy. <i>BMJ Open Diabetes Research and Care</i> , 2020 , 8,	4.5	7

388	Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. <i>Journal of Innovative Optical Health Sciences</i> , 2020 , 13,	1.2	5
387	Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. <i>Scientific Reports</i> , 2020 , 10, 2540	4.9	2
386	Otitis Media Middle Ear Effusion Identification and Characterization Using an Optical Coherence Tomography Otoscope. <i>Otolaryngology - Head and Neck Surgery</i> , 2020 , 162, 367-374	5.5	12
385	Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. <i>Journal of Biomedical Optics</i> , 2020 , 25,	3.5	2
384	Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. <i>Neurophotonics</i> , 2020 , 7, 045007	3.9	3
383	Depixelation and enhancement of fiber bundle images by bundle rotation. <i>Applied Optics</i> , 2020 , 59, 530	5-5 <i>:∳</i> 4	5
382	Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy. <i>Biomedical Optics Express</i> , 2020 , 11, 5903-5919	3.5	6
381	Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm. <i>Optics Express</i> , 2020 , 28, 23306-23319	3.3	6
380	Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head. <i>Optics Letters</i> , 2020 , 45, 909-912	3	6
379	K-means clustering of coherent Raman spectra from extracellular vesicles visualized by label-free multiphoton imaging. <i>Optics Letters</i> , 2020 , 45, 3613-3616	3	1
378	Single-shot two-dimensional spectroscopic magnetomotive optical coherence elastography with graphics processing unit acceleration. <i>Optics Letters</i> , 2020 , 45, 4124-4127	3	3
377	Emergency ventilator for COVID-19. <i>PLoS ONE</i> , 2020 , 15, e0244963	3.7	11
376	Development of a fast calibration method for image mapping spectrometry. <i>Applied Optics</i> , 2020 , 59, 6062-6069	1.7	1
375	Phase-based Eulerian motion magnification reveals eardrum mobility from pneumatic otoscopy without sealing the ear canal. <i>JPhys Photonics</i> , 2020 , 2,	2.5	3
374	Assessing the Effect of Middle Ear Effusions on Wideband Acoustic Immittance Using Optical Coherence Tomography. <i>Ear and Hearing</i> , 2020 , 41, 811-824	3.4	7
373	Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. <i>Scientific Reports</i> , 2020 , 10, 9154	4.9	3
372	Dynamic Signatures of Lipid Droplets as New Markers to Quantify Cellular Metabolic Changes. <i>Analytical Chemistry</i> , 2020 , 92, 15943-15952	7.8	5
371	characterization of minipig skin as a model for dermatological research using multiphoton microscopy. <i>Experimental Dermatology</i> , 2020 , 29, 953-960	4	4

(2018-2020)

370	Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties. <i>Environmental Science & Environmental Science & Env</i>	10.3	4
369	Low-noise femtosecond Cherenkov fiber laser, continuously tunable across the entire red-green-blue spectral range. <i>EPJ Web of Conferences</i> , 2019 , 205, 01002	0.3	
368	Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. <i>APL Photonics</i> , 2019 , 4,	5.2	9
367	Label-free molecular profiling for identification of biomarkers in carcinogenesis using multimodal multiphoton imaging. <i>Quantitative Imaging in Medicine and Surgery</i> , 2019 , 9, 742-756	3.6	7
366	Automated classification platform for the identification of otitis media using optical coherence tomography. <i>Npj Digital Medicine</i> , 2019 , 2, 22	15.7	14
365	Characterization of Magnetic Nanoparticle-Seeded Microspheres for Magnetomotive and Multimodal Imaging. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25,	3.8	3
364	Comparison between optical coherence tomographic and histopathologic appearances of artifacts caused by common surgical conditions and instrumentation. <i>Veterinary Surgery</i> , 2019 , 48, 1361-1371	1.7	4
363	Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography. <i>Biomedical Optics Express</i> , 2019 , 10, 539-551	3.5	9
362	Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. <i>Biomedical Optics Express</i> , 2019 , 10, 1339-1350	3.5	18
361	Simultaneous label-free autofluorescence and multi-harmonic imaging reveals structural and metabolic changes in murine skin. <i>Biomedical Optics Express</i> , 2019 , 10, 5431-5444	3.5	14
360	Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. <i>Biomedical Optics Express</i> , 2019 , 10, 6408-6421	3.5	14
359	Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. <i>Optics Express</i> , 2019 , 27, 12998-13014	3.3	7
358	Local wavefront mapping in tissue using computational adaptive optics OCT. <i>Optics Letters</i> , 2019 , 44, 1186-1189	3	6
357	Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. <i>Optics Letters</i> , 2019 , 44, 4391-4394	3	6
356	Label-free visualization and characterization of extracellular vesicles in breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24012-24018	11.5	30
355	Real-time intraoperative diagnosis by deep neural network driven multiphoton virtual histology. <i>Npj Precision Oncology</i> , 2019 , 3, 33	9.8	15
354	Intra-operative imaging of surgical margins of canine soft tissue sarcoma using optical coherence tomography. <i>Veterinary and Comparative Oncology</i> , 2019 , 17, 80-88	2.5	11
353	Intraoperative optical coherence tomography of the human thyroid: Feasibility for surgical assessment. <i>Translational Research</i> , 2018 , 195, 13-24	11	7

352	Magnetomotive Displacement of the Tympanic Membrane Using Magnetic Nanoparticles: Toward Enhancement of Sound Perception. <i>IEEE Transactions on Biomedical Engineering</i> , 2018 , 65, 2837-2846	5	8
351	Direct Analysis of Pathogenic Structures Affixed to the Tympanic Membrane during Chronic Otitis Media. <i>Otolaryngology - Head and Neck Surgery</i> , 2018 , 159, 117-126	5.5	17
350	Investigating the healing mechanisms of an angiogenesis-promoting topical treatment for diabetic wounds using multimodal microscopy. <i>Journal of Biophotonics</i> , 2018 , 11, e201700195	3.1	11
349	Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure. <i>Biomedical Optics Express</i> , 2018 , 9, 397-409	3.5	10
348	Combined hardware and computational optical wavefront correction. <i>Biomedical Optics Express</i> , 2018 , 9, 2562-2574	3.5	13
347	Wavefront measurement using computational adaptive optics. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 466-473	1.8	12
346	Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 15	8.2	20
345	In vivo detection of nanometer-scale structural changes of the human tympanic membrane in otitis media. <i>Scientific Reports</i> , 2018 , 8, 8777	4.9	16
344	Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-11	3.5	10
343	Slide-free virtual histochemistry (Part I): development via nonlinear optics. <i>Biomedical Optics Express</i> , 2018 , 9, 5240-5252	3.5	22
342	Slide-free virtual histochemistry (Part II): detection of field cancerization. <i>Biomedical Optics Express</i> , 2018 , 9, 5253-5268	3.5	20
341	Complementary use of polarization-sensitive and standard OCT metrics for enhanced intraoperative differentiation of breast cancer. <i>Biomedical Optics Express</i> , 2018 , 9, 6519-6528	3.5	16
340	High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. <i>Optica</i> , 2018 , 5, 1290-1296	8.6	24
339	Optical assessment of the in vivo tympanic membrane status using a handheld optical coherence tomography-based otoscope. <i>Acta Oto-Laryngologica</i> , 2018 , 138, 367-374	1.6	10
338	Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging. <i>Science Advances</i> , 2018 , 4, eaau5603	14.3	45
337	Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 24	8.2	11
336	Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. <i>Nature Communications</i> , 2018 , 9, 2125	17.4	109
335	Non-invasive optical assessment of viscosity of middle ear effusions in otitis media. <i>Journal of Biophotonics</i> , 2017 , 10, 394-403	3.1	35

(2017-2017)

334	Label-free in vivo cellular-level detection and imaging of apoptosis. <i>Journal of Biophotonics</i> , 2017 , 10, 143-150	3.1	20
333	Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. <i>Science Advances</i> , 2017 , 3, e1600675	14.3	26
332	Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2017 , 22, 34001	3.5	5
331	Selective in vivo metabolic cell-labeling-mediated cancer targeting. <i>Nature Chemical Biology</i> , 2017 , 13, 415-424	11.7	188
330	In Vivo Assessment of Engineered Skin Cell Delivery with Multimodal Optical Microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2017 , 23, 434-442	2.9	2
329	Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification. <i>Lasers in Surgery and Medicine</i> , 2017 , 49, 240-248	3.6	18
328	A quantitative framework for the analysis of multimodal optical microscopy images. <i>Quantitative Imaging in Medicine and Surgery</i> , 2017 , 7, 24-37	3.6	6
327	Coherent control of an opsin in living brain tissue. <i>Nature Physics</i> , 2017 , 13, 1111-1116	16.2	9
326	Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy. <i>Journal of Biophotonics</i> , 2017 , 10, 1430-1441	3.1	3
325	Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2017 , 18, 555-568	3.3	15
324	Review of optical coherence tomography in oncology. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-23	3.5	64
323	Low-cost hand-held probe for depth-resolved low-coherence interferometry. <i>Biomedical Optics Express</i> , 2017 , 8, 338-348	3.5	22
322	Computational optical coherence tomography [Invited]. Biomedical Optics Express, 2017, 8, 1549-1574	3.5	34
321	Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. <i>Photonics Research</i> , 2017 , 5, 750-761	6	13
320	Introduction to the feature issue on the 25 year anniversary of optical coherence tomography. <i>Biomedical Optics Express</i> , 2017 , 8, 3289-3291	3.5	3
319	Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-11	3.5	28
318	Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-30	3.5	33
317	Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy. <i>Journal of Biomedical Optics</i> , 2017 , 22, 70502	3.5	5

316	Biophotonics: the big picture. Journal of Biomedical Optics, 2017, 23, 1-7	3.5	18
315	Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment. <i>Journal of Biomedical Optics</i> , 2017 , 23, 1-10	3.5	26
314	In vivo 3D imaging of the human tympanic membrane using a wide-field diagonal-scanning optical coherence tomography probe. <i>Applied Optics</i> , 2017 , 56, D115-D119	0.2	13
313	A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2016 , 17, 403-16	3.3	18
312	Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range. <i>Optics Letters</i> , 2016 , 41, 4024-7	3	4
311	In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy. <i>Journal of Biomedical Optics</i> , 2016 , 21, 86006	3.5	7
310	Automated computational aberration correction method for broadband interferometric imaging techniques. <i>Optics Letters</i> , 2016 , 41, 3324-7	3	17
309	Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. <i>Scientific Reports</i> , 2016 , 6, 32922	4.9	25
308	Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer. <i>BMC Cancer</i> , 2016 , 16, 144	4.8	38
307	Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. <i>Environmental Science & Environmental Science & Environ</i>	10.3	44
306	Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. <i>Journal of Biophotonics</i> , 2016 , 9, 109-16	3.1	9
305	Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22,	3.8	6
304	Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22,	3.8	15
303	Computational adaptive optics of the human retina 2016 ,		1
302	Automated interferometric synthetic aperture microscopy and computational adaptive optics for improved optical coherence tomography. <i>Applied Optics</i> , 2016 , 55, 2034-41	0.2	13
301	Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation. <i>Journal of Biomedical Optics</i> , 2016 , 21, 107005	3.5	8
300	Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging. Journal of Sensors, 2016 , 2016,	2	14

298	Progress in Cherenkov femtosecond fiber lasers. Journal Physics D: Applied Physics, 2016, 49,	3	22
297	Longitudinal in vivo tracking of adverse effects following topical steroid treatment. <i>Experimental Dermatology</i> , 2016 , 25, 362-7	4	10
296	Stain-free histopathology by programmable supercontinuum pulses. <i>Nature Photonics</i> , 2016 , 10, 534-5	40 _{3.9}	125
295	Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography. <i>Biomedical Optics Express</i> , 2016 , 7, 2321-30	3.5	15
294	Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. <i>Physics in Medicine and Biology</i> , 2015 , 60, 727-39	3.8	15
293	Data Analysis and Signal Postprocessing for Optical Coherence Tomography 2015 , 407-436		
292	Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study. <i>Annals of Surgical Oncology</i> , 2015 , 22, 3356-62	3.1	75
291	Computational high-resolution optical imaging of the living human retina. <i>Nature Photonics</i> , 2015 , 9, 440-443	33.9	95
290	Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. <i>Environmental Science & Environmental Science & En</i>	10.3	67
289	Non-invasive, real-time reporting drug release in vitro and in vivo. <i>Chemical Communications</i> , 2015 , 51, 6948-51	5.8	44
288	Mechanical contrast in spectroscopic magnetomotive optical coherence elastography. <i>Physics in Medicine and Biology</i> , 2015 , 60, 6655-68	3.8	13
287	Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources 2015 , 1237-1256		
286	Molecular Optical Coherence Tomography Contrast Enhancement and Imaging 2015 , 1429-1454		2
285	Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery. <i>Cancer Research</i> , 2015 , 75, 3706-12	10.1	87
284	Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier. Journal of Biophotonics, 2015 , 8, 512-21	3.1	5
283	Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy. <i>Biomedical Optics Express</i> , 2015 , 6, 4277-87	3.5	15
282	Polarization-sensitive interferometric synthetic aperture microscopy. <i>Applied Physics Letters</i> , 2015 , 107, 211106	3.4	6
281	Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma. <i>Journal of Ophthalmic Inflammation and Infection</i> , 2015 , 5, 53	2.3	5

280	Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1814-1820	4	44
279	A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics 2015 ,		3
278	Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media. <i>Laryngoscope</i> , 2015 , 125, E276-82	3.6	50
277	Computational Aberration Correction for Human Retinal Imaging. <i>Optics and Photonics News</i> , 2015 , 2015, 43	1.9	
276	Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography. <i>Quantitative Imaging in Medicine and Surgery</i> , 2015 , 5, 69-77	3.6	30
275	Optical Coherence Elastography 2015 , 1007-1054		8
274	Optical Coherence Tomography in Tissue Engineering 2015 , 1965-2001		
273	Interferometric Synthetic Aperture Microscopy (ISAM) 2015 , 965-1004		2
272	Intraoperative OCT in Surgical Oncology 2015 , 2393-2412		1
271	DSP Technology and Methods for OCT 2015 , 437-458		
270	. IEEE Journal of Selected Topics in Quantum Electronics, 2014 , 20, 4-7	3.8	3
269	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. <i>Translational Vision Science and Technology</i> , 2014 , 3, 3	3.3	5
268	Optical coherence tomography for advanced screening in the primary care office. <i>Journal of Biophotonics</i> , 2014 , 7, 525-33	3.1	45
267	Tunable femtosecond Cherenkov fiber laser 2014 ,		1
266	Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office 2014 ,		4
265	In vivointra-operative breast tumor margin detection using a portable OCT system with a handheld surgical imaging probe 2014 ,		3
264	Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves. <i>Biomedical Optics Express</i> , 2014 , 5, 2349-61	3.5	33
263	Computed optical interferometric tomography for high-speed volumetric cellular imaging. <i>Biomedical Optics Express</i> , 2014 , 5, 2988-3000	3.5	37

262	Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography. <i>Biomedical Optics Express</i> , 2014 , 5, 3417-26	3.5	47	
261	Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope. <i>Biomedical Optics Express</i> , 2014 , 5, 3699-716	3.5	16	
260	Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. <i>Biomedical Optics Express</i> , 2014 , 5, 4131-43	3.5	30	
259	Introduction to the BIOMED 2014 feature issue. <i>Biomedical Optics Express</i> , 2014 , 5, 4144	3.5		
258	Multifocal interferometric synthetic aperture microscopy. <i>Optics Express</i> , 2014 , 22, 16606-18	3.3	11	
257	Stability in computed optical interferometric tomography (Part II): in vivo stability assessment. <i>Optics Express</i> , 2014 , 22, 19314-26	3.3	18	
256	Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy. <i>Optics Express</i> , 2014 , 22, 2013	3 8 -43	11	
255	Optical parametrically gated microscopy in scattering media. <i>Optics Express</i> , 2014 , 22, 22547-60	3.3	3	
254	High Resolution Phase-Sensitive Magnetomotive Optical Coherence Microscopy for Tracking Magnetic Microbeads and Cellular Mechanics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20,	3.8	15	
253	Static third-harmonic lines in widely variable fiber continuum generation. <i>Physical Review A</i> , 2014 , 89,	2.6	3	
252	Real-time computed optical interferometric tomography 2014,		1	
251	Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. <i>Science Translational Medicine</i> , 2014 , 6, 253rv2	17.5	61	
250	Volumetric full-range magnetomotive optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2014 , 19, 126001	3.5	8	
249	Stability in computed optical interferometric tomography (part I): stability requirements. <i>Optics Express</i> , 2014 , 22, 19183-97	3.3	29	
248	In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration. <i>Journal of Biophotonics</i> , 2014 , 7, 96-102	3.1	13	
247	Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using	3.8	11	
	IB integrin-targeted microspheres. <i>Molecular Imaging and Biology</i> , 2014 , 16, 36-43			١
246	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. <i>Translational Vision Science and Technology</i> , 2014 , 3, 10	3.3	7	

244	Computed optical interferometric tomography for high-speed volumetric cellular imaging 2014,		1
243	Nonlinear Interferometric Vibrational Imaging and Spectroscopy 2014 , 273-294		
242	Coherent fiber supercontinuum for biophotonics. Laser and Photonics Reviews, 2013, 7, 628	8.3	86
241	Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. <i>Hearing Research</i> , 2013 , 301, 193-200	3.9	36
240	Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. <i>Water Research</i> , 2013 , 47, 2531-42	12.5	70
239	Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 892-895	2.2	11
238	Real-time computed optical interferometric tomography. <i>Nature Photonics</i> , 2013 , 7, 444-448	33.9	68
237	Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6949-52	16.4	49
236	Three-dimensional optical coherence tomography for optical biopsy of lymph nodes and assessment of metastatic disease. <i>Annals of Surgical Oncology</i> , 2013 , 20, 3685-93	3.1	25
235	In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. <i>Biomedical Optics Express</i> , 2013 , 4, 1817-28	3.5	10
234	Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids. <i>Optics Express</i> , 2013 , 21, 7139-47	3.3	11
233	Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. <i>Optics Express</i> , 2013 , 21, 8269-75	3.3	24
232	Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses. <i>Optics Express</i> , 2013 , 21, 23188-96	3.3	23
231	Imaging and tracking of bone marrow-derived immune and stem cells. <i>Methods in Molecular Biology</i> , 2013 , 1052, 57-76	1.4	14
230	Magnetomotive optical coherence elastography for microrheology of biological tissues. <i>Journal of Biomedical Optics</i> , 2013 , 18, 121504	3.5	40
229	Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer 2013 ,		4
228	Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2013 , 2013, 117-20	0.9	1
227	Stiffness-modulated water retention and neovascularization of dermal fibroblast-encapsulating collagen gel. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1275-84	3.9	12

226	SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS. <i>Journal of Innovative Optical Health Sciences</i> , 2013 , 6, 1350015	1.2	9
225	Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin 2013 , 1, 8-19		18
224	Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. <i>Angewandte Chemie</i> , 2013 , 125, 7087-7090	3.6	5
223	The Gold Nanorod-Biology Interface: From Proteins to Cells to Tissue. <i>Current Physical Chemistry</i> , 2013 , 3,	0.5	5
222	Optical Coherence Imaging for Surgical Pathology Assessment 2013 , 215		
221	All-fiber femtosecond Cherenkov source. <i>EPJ Web of Conferences</i> , 2013 , 41, 10017	0.3	
220	Quantitative FRET imaging to visualize the invasiveness of live breast cancer cells. <i>PLoS ONE</i> , 2013 , 8, e58569	3.7	21
219	Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 106, 379-384	1.9	10
218	Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. <i>Molecular Imaging and Biology</i> , 2012 , 14, 17-24	3.8	42
217	Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 1280-1286	3.8	35
216	Multimodal Nonlinear Microscopy by Shaping a Fiber Supercontinuum From 900 to 1160 nm. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18,	3.8	30
215	Computational adaptive optics for broadband optical interferometric tomography of biological tissue. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7175.	-8 ¹ 0 ^{1.5}	124
214	Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin. <i>Journal of Biophotonics</i> , 2012 , 5, 437-48	3.1	32
213	All-fiber femtosecond Cherenkov radiation source. <i>Optics Letters</i> , 2012 , 37, 2769-71	3	28
212	Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. <i>Optics Letters</i> , 2012 , 37, 2172-4	3	49
211	Wave-Breaking Extended Coherent Fiber: Supercontinuum Pulse Compression. <i>Optics and Photonics News</i> , 2012 , 23, 55	1.9	
210	Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. <i>Optics Letters</i> , 2012 , 37, 1100-2	3	11
209	Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. <i>Biomedical Optics Express</i> , 2012 , 3, 1149-61	3.5	35

208	Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser. <i>Optics Express</i> , 2012 , 20, 1113-28	3.3	41
207	Guide-star-based computational adaptive optics for broadband interferometric tomography. <i>Applied Physics Letters</i> , 2012 , 101, 221117	3.4	31
206	Noninvasive in vivo optical detection of biofilm in the human middle ear. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9529-34	11.5	82
205	Modern Trends in Imaging V: Optical Coherence Tomography for Rapid Tissue Screening and Directed Histological Sectioning. <i>Analytical Cellular Pathology</i> , 2012 , 35, 129-143	3.4	10
204	Optical coherence tomography for rapid tissue screening and directed histological sectioning. <i>Analytical Cellular Pathology</i> , 2012 , 35, 129-43	3.4	3
203	Visualising Middle Ear Biofilms in Otitis Media: a new benchmark for successful treatment 2012 , 21, 94	-95	
202	Interferometric Synthetic Aperture Microscopy with Computational Adaptive Optics for High-Resolution Tomography of Scattering Tissue 2012 ,		1
201	Full-range k-domain linearization in spectral-domain optical coherence tomography. <i>Applied Optics</i> , 2011 , 50, 1158-63	0.2	53
200	In vivo three-dimensional optical coherence elastography. <i>Optics Express</i> , 2011 , 19, 6623-34	3.3	123
199	Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. <i>Optics Letters</i> , 2011 , 36, 2281-3	3	38
198	Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus. <i>Optics Letters</i> , 2011 , 36, 2315-7	3	18
197	Novel method for non-invasive induction of a middle-ear biofilm in the rat. <i>Vaccine</i> , 2011 , 29, 1628-33	4.1	18
196	Magnetomotive optical coherence microscopy for cell dynamics and biomechanics 2011,		2
195	The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy 2011 ,		5
194	Nonlinear interferometric vibrational imaging for fast label-free visualization of molecular domains in skin. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 2817-25	4.4	11
193	In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin. <i>Cellular and Molecular Bioengineering</i> , 2011 , 4, 231-238	3.9	22
192	Magnetomotive molecular nanoprobes. Current Medicinal Chemistry, 2011, 18, 2103-14	4.3	19
191	Long-term time-lapse multimodal microscopy for tracking cell dynamics in live tissue 2011 ,		2

(2010-2011)

190	Handheld optical coherence tomography scanner for primary care diagnostics. <i>IEEE Transactions on Biomedical Engineering</i> , 2011 , 58, 741-4	5	103
189	Lymphatic Biodistribution of Polylactide Nanoparticles. <i>Molecular Imaging</i> , 2010 , 9, 7290.2010.00012	3.7	19
188	Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy 2010 ,		7
187	DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW. <i>Journal of Innovative Optical Health Sciences</i> , 2010 , 3, 221-233	1.2	47
186	In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8085-90	11.5	94
185	Numerical analysis of gradient index lens-based optical coherence tomography imaging probes. Journal of Biomedical Optics, 2010 , 15, 066027	3.5	37
184	Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. <i>Cancer Research</i> , 2010 , 70, 9562-9	10.1	38
183	Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. <i>Physics in Medicine and Biology</i> , 2010 , 55, 1189-201	3.8	52
182	Microscopic imaging and spectroscopy with scattered light. <i>Annual Review of Biomedical Engineering</i> , 2010 , 12, 285-314	12	90
181	Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1057-1059	2.2	52
180	High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition. <i>Analytical Chemistry</i> , 2010 , 82, 3812-8	7.8	27
179	Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear. <i>Biomedical Optics Express</i> , 2010 , 1, 1104-1116	3.5	37
178	Sonification of optical coherence tomography data and images. <i>Optics Express</i> , 2010 , 18, 9934-44	3.3	11
177	Dynamic spectral-domain optical coherence elastography for tissue characterization. <i>Optics Express</i> , 2010 , 18, 14183-90	3.3	53
176	Spectroscopic optical coherence elastography. <i>Optics Express</i> , 2010 , 18, 25519-34	3.3	71
175	Scalar generalized nonlinear Schrdinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources. <i>Optics Express</i> , 2010 , 18, 27872-84	3.3	28
174	Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography. <i>Optics Letters</i> , 2010 , 35, 1683-5	3	23
173	Correction of coherence gate curvature in high numerical aperture optical coherence imaging. <i>Optics Letters</i> , 2010 , 35, 3120-2	3	26

172	Imaging and analysis of three-dimensional cell culture models. <i>Methods in Molecular Biology</i> , 2010 , 591, 211-27	1.4	55
171	Fourier Transform Light Scattering (FTLS) of Cells and Tissues. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 2501-2511	0.3	19
170	Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. <i>IEEE Transactions on Biomedical Engineering</i> , 2010 , 57, 953-9	5	286
169	Introduction to the Special Issue on Biophotonics B art 2. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 703-705	3.8	O
168	Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2010 , 29, 63-70		60
167	Optical arbitrary waveform characterization using linear spectrograms. <i>Optics Communications</i> , 2010 , 283, 3017-3021	2	1
166	Optical Coherence Tomography for Cancer Detection 2010 , 209-250		5
165	Multimodality microscopy of cell dynamics in three-dimensional engineered and natural tissues 2009 ,		2
164	Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber. <i>Applied Physics Letters</i> , 2009 , 94, 101109	3.4	17
163	Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering 2009 ,		2
162	Intraoperative evaluation of breast tumor margins with optical coherence tomography. <i>Cancer Research</i> , 2009 , 69, 8790-6	10.1	259
161	Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. <i>Technology in Cancer Research and Treatment</i> , 2009 , 8, 315-21	2.7	34
160	Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 034019	3.5	15
159	Imaging engineered tissues using structural and functional optical coherence tomography. <i>Journal of Biophotonics</i> , 2009 , 2, 643-55	3.1	53
158	Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6407		74
157	Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers. <i>Optics Letters</i> , 2009 , 34, 668-70	3	5
156	Optical properties of tissues quantified by Fourier-transform light scattering. <i>Optics Letters</i> , 2009 , 34, 1372-4	3	52
155	Molecular identification by generating coherence between molecular normal modes using stimulated Raman scattering. <i>Optics Letters</i> , 2009 , 34, 1756-8	3	6

(2008-2009)

154	Acoustomotive optical coherence elastography for measuring material mechanical properties. <i>Optics Letters</i> , 2009 , 34, 2894-6	3	44	
153	Partially coherent illumination in full-field interferometric synthetic aperture microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2009 , 26, 376-86	1.8	20	
152	Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography. <i>Optics Express</i> , 2009 , 17, 8125-36	3.3	32	
151	Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation. <i>Optics Express</i> , 2009 , 17, 9858-72	3.3	52	
150	Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging. <i>Optics Express</i> , 2009 , 17, 13447-57	3.3	30	
149	Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers. <i>Optics Express</i> , 2009 , 17, 17983-8	3.3	17	
148	Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. <i>Optics Express</i> , 2009 , 17, 23114-22	3.3	78	
147	Expression order of alpha-v and beta-3 integrin subunits in the N-methyl-N-nitrosourea-induced rat mammary tumor model. <i>Cancer Investigation</i> , 2009 , 27, 496-503	2.1	4	
146	Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING. <i>Journal of Innovative Optical Health Sciences</i> , 2009 , 2, 387-396	1.2	17	
145	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 671-697	3.8	14	
144	High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 824-832	3.8	14	
143	Dynamic optical coherence elastography and applications 2009,		2	
142	Real-Time Interferometric Synthetic Aperture Microscopy for Clinical Applications. <i>Optics and Photonics News</i> , 2008 , 19, 32	1.9	2	
141	Group refractive index reconstruction with broadband interferometric confocal microscopy. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 1156-64	1.8	5	
140	Localized waveguide formation in germanosilicate fiber transmitting femtosecond IR pulses. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 274-278	1.7	2	
139	Real-time interferometric synthetic aperture microscopy. <i>Optics Express</i> , 2008 , 16, 2555-69	3.3	56	
138	Anomalous bending effect in photonic crystal fibers. Optics Express, 2008, 16, 5617-22	3.3		
137	Optical micro-scale mapping of dynamic biomechanical tissue properties. <i>Optics Express</i> , 2008 , 16, 110	52365	108	

136	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. <i>Optics Express</i> , 2008 , 16, 11525	3.3	74
135	Plastinated tissue samples as three-dimensional models for optical instrument characterization. <i>Optics Express</i> , 2008 , 16, 16272-83	3.3	5
134	Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors 2008 ,		11
133	High-speed processing architecture for spectral-domain optical coherence microscopy. <i>Journal of Biomedical Optics</i> , 2008 , 13, 044013	3.5	8
132	Interferometric Synthetic Aperture Microscopy 2008,		1
131	Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications 2008 ,		4
130	Modeling and measurement of tissue elastic moduli using optical coherence elastography 2008,		4
129	Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography 2008 ,		2
128	Nonlinear interferometric vibrational imaging of biological tissue 2008,		1
127	Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy. <i>Sensors</i> , 2008 , 8, 3903-3931	3.8	31
126	Fourier transform light scattering of inhomogeneous and dynamic structures. <i>Physical Review Letters</i> , 2008 , 101, 238102	7.4	116
125	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. <i>Optics Express</i> , 2008 , 16, 11525-39	3.3	64
124	Optical coherence tomography: a review of clinical development from bench to bedside. <i>Journal of Biomedical Optics</i> , 2007 , 12, 051403	3.5	349
123	Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. <i>Microscopy Research and Technique</i> , 2007 , 70, 361-71	2.8	24
122	Interferometric synthetic aperture microscopy. <i>Nature Physics</i> , 2007 , 3, 129-134	16.2	275
121	Spectroscopic Optical Coherence Tomography and Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 1629-1640	3.8	48
120	Nonlinear Interferometric Vibrational Imaging. ACS Symposium Series, 2007, 236-258	0.4	
119	Comment on "In vivo cancer diagnosis with optical spectroscopy and acoustically induced blood stasis using a murine Mca35 model," [Med. Phys. 33, 1623-1633 (2006)]. <i>Medical Physics</i> , 2007 , 34, 1130	4.4	

(2006-2007)

118	Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer 2007 ,		7	
117	Real-time inverse scattering for optical coherence tomography 2007,		1	
116	High numerical aperture full-field optical coherence tomography with space-invariant resolution without scanning the focus 2007 ,		1	
115	Phase-resolved spectral-domain magnetomotive optical coherence tomography 2007,		1	
114	Needle-based refractive index measurement using low-coherence interferometry. <i>Optics Letters</i> , 2007 , 32, 385-7	3	39	
113	Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy. <i>Optics Letters</i> , 2007 , 32, 1441-3	3	20	
112	Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography. <i>Optics Letters</i> , 2007 , 32, 2037-9	3	11	
111	Inverse scattering for frequency-scanned full-field optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 1034-41	1.8	47	
110	Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 2527-42	1.8	42	
109	Needle-based reflection refractometry of scattering samples using coherence-gated detection. <i>Optics Express</i> , 2007 , 15, 4787-94	3.3	19	
108	Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. <i>Nano Letters</i> , 2007 , 7, 861-7	11.5	250	
107	Interferometric synthetic aperture microscopy 2007 ,		1	
106	Advances in contrast enhancement for optical coherence tomography. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2006 , 2006, 121-4		3	
105	High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2006 , 11, 34001	3.5	77	
104	Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. <i>Journal of Biomedical Optics</i> , 2006 , 11, 021014	3.5	53	
103	Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. <i>Journal of Biomedical Optics</i> , 2006 , 11, 054015	3.5	83	
102	Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. <i>Applied Physics Letters</i> , 2006 , 88, 053901	3.4	61	
101	Optical coherence elastography of engineered and developing tissue. <i>Tissue Engineering</i> , 2006 , 12, 63-	73	100	

100	Tumor targeting by surface-modified protein microspheres. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3472-3	16.4	106
99	Refractive index of carcinogen-induced rat mammary tumours. <i>Physics in Medicine and Biology</i> , 2006 , 51, 2165-77	3.8	55
98	Spectroscopic spectral-domain optical coherence microscopy. <i>Optics Letters</i> , 2006 , 31, 1079-81	3	79
97	High-spectral-resolution coherent anti-Stokes Raman scattering with interferometrically detected broadband chirped pulses. <i>Optics Letters</i> , 2006 , 31, 1543-5	3	24
96	Inverse scattering for high-resolution interferometric microscopy. <i>Optics Letters</i> , 2006 , 31, 3585-7	3	36
95	Inverse scattering for optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2006 , 23, 1027-37	1.8	91
94	Inverse scattering for rotationally scanned optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2006 , 23, 2433-9	1.8	12
93	In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. <i>Optics Express</i> , 2006 , 14, 1547-56	3.3	50
92	Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. <i>Optics Express</i> , 2006 , 14, 6724-38	3.3	143
91	Optical coherence tomography of cell dynamics in three-dimensional tissue models. <i>Optics Express</i> , 2006 , 14, 7159-71	3.3	70
90	High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography 2006 ,		2
89	Demonstration of inverse scattering in optical coherence tomography 2006 , 6079, 312		
88	Light-scattering spectroscopic optical coherence tomography for differentiating cells in 3D cell culture 2006 , 6088, 26		3
87	Human Breast Cancer Identification by K-Space Analysis of Optical Coherence Tomography Images 2006 ,		2
86	An inverse scattering method for catheter-based optical coherence tomography 2006,		1
85	Optical Coherence Elastography of Engineered and Developing Tissue. <i>Tissue Engineering</i> , 2006 , 06021	00702	09003
84	Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. <i>IEEE Transactions on Image Processing</i> , 2005 , 14, 1254-64	8.7	47
83	Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography. <i>Applied Optics</i> , 2005 , 44, 1813-22	1.7	35

(2004-2005)

82	Speckle reduction by I-divergence regularization in optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2005 , 22, 2366-71	1.8	62
81	Wavelength-dependent scattering in spectroscopic optical coherence tomography. <i>Optics Express</i> , 2005 , 13, 5450-62	3.3	71
80	Magnetomotive contrast for in vivo optical coherence tomography. <i>Optics Express</i> , 2005 , 13, 6597-614	3.3	128
79	Molecularly sensitive optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 495-7	3	37
78	Imaging magnetically labeled cells with magnetomotive optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 747-9	3	97
77	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues 2005 , 5699, 102		1
76	Gaussian beam deconvolution in optical coherence tomography 2005,		2
75	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues 2005 ,		1
74	Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics. <i>Biomedical Microdevices</i> , 2005 , 7, 7-12	3.7	14
73	Optical probes and techniques for molecular contrast enhancement in coherence imaging. <i>Journal of Biomedical Optics</i> , 2005 , 10, 41208	3.5	105
72	Optical coherence elastography of developing biological tissues 2005,		2
71	Optical biopsy of lymph node morphology using optical coherence tomography. <i>Technology in Cancer Research and Treatment</i> , 2005 , 4, 539-48	2.7	59
70	Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system 2005 ,		9
69	Nonlinear Interferometric Vibrational Imaging with Differentiation of Resonant CARS from Nonresonant Four-Wave Mixing Processes 2004 , TuB3		
68	Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes. <i>Applied Physics Letters</i> , 2004 , 85, 5787-5789	3.4	46
67	Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images. <i>Journal of Biomedical Optics</i> , 2004 , 9, 1281-7	3.5	12
66	Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7516-21	11.5	56
65	Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size. Journal of Biomedical Optics, 2004, 9, 1288-96	3.5	3

64	Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 186-90	5	27
63	Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. <i>Breast Cancer Research and Treatment</i> , 2004 , 84, 85-97	4.4	174
62	Nonlinear interferometric vibrational imaging. <i>Physical Review Letters</i> , 2004 , 92, 123905	7.4	96
61	Structural and functional optical imaging of three-dimensional engineered tissue development. <i>Tissue Engineering</i> , 2004 , 10, 1747-56		54
60	Nonlinear optical contrast enhancement for optical coherence tomography. <i>Optics Express</i> , 2004 , 12, 331-41	3.3	80
59	Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. <i>Optics Express</i> , 2004 , 12, 4790-803	3.3	61
58	Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. <i>Optics Letters</i> , 2004 , 29, 1647-9	3	120
57	Magnetic contrast agents for optical coherence tomography 2004,		8
56	Real-time digital design for an optical coherence tomography acquisition and processing system 2004 ,		2
55	Nonlinear interferometric vibrational imaging of molecular species 2004 , 5321, 149		
55 54	Nonlinear interferometric vibrational imaging of molecular species 2004 , 5321, 149 Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8	4.8	60
	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in	4.8	60
54	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8	4.8	
54 53	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8 Optical manipulation of silicon microparticles in biological environments 2003 ,	4.8	1
54 53 52	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8 Optical manipulation of silicon microparticles in biological environments 2003 , Optical characterization of contrast agents for optical coherence tomography 2003 , 4967, 129	4.8	1
54 53 52 51	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8 Optical manipulation of silicon microparticles in biological environments 2003 , Optical characterization of contrast agents for optical coherence tomography 2003 , 4967, 129 Use of molecular beacons for the detection of bacteria in microfluidic devices 2003 , 4982, 170 Optical coherence tomography: technology and applications for neuroimaging. <i>Psychophysiology</i> ,		5
54 53 52 51 50	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8 Optical manipulation of silicon microparticles in biological environments 2003 , Optical characterization of contrast agents for optical coherence tomography 2003 , 4967, 129 Use of molecular beacons for the detection of bacteria in microfluidic devices 2003 , 4982, 170 Optical coherence tomography: technology and applications for neuroimaging. <i>Psychophysiology</i> , 2003 , 40, 529-41 Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and	4.1	1 5 58

46	Projected index computed tomography. Optics Letters, 2003, 28, 701-3	3	26
45	Functional optical coherence tomography for detecting neural activity through scattering changes. <i>Optics Letters</i> , 2003 , 28, 1218-20	3	62
44	Engineered microsphere contrast agents for optical coherence tomography. <i>Optics Letters</i> , 2003 , 28, 1546-8	3	187
43	Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. <i>Optics Letters</i> , 2002 , 27, 2010-2	3	93
42	Real-Time Optical Coherence Tomography for Minimally Invasive Imaging of Prostate Ablation. <i>Computer Aided Surgery</i> , 2001 , 6, 94-103		33
41	Surgical Guidance and Intervention 2001 , 613-647		1
40	Real-time optical coherence tomography for minimally invasive imaging of prostate ablation. <i>Computer Aided Surgery</i> , 2001 , 6, 94-103		11
39	Optical Coherence Tomography and Developmental Biology 2001 , 505-538		
38	Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. <i>American Journal of Cardiology</i> , 2000 , 85, 641-4	3	127
37	Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. <i>Journal of Gastroenterology</i> , 2000 , 35, 87-92	6.9	126
36	Optical coherence tomography: advanced technology for the endoscopic imaging of Barretts esophagus. <i>Endoscopy</i> , 2000 , 32, 921-30	3.4	199
35	Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. <i>Neoplasia</i> , 2000 , 2, 9-25	6.4	568
34	Optical coherence tomography imaging in developmental biology. <i>Methods in Molecular Biology</i> , 2000 , 135, 217-33	1.4	13
33	High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. <i>BJOG: an International Journal of Obstetrics and Gynaecology</i> , 1999 , 106, 1071-7	3.7	38
32	Optical imaging technology in minimally invasive surgery. Current status and future directions. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 1999 , 13, 718-22	5.2	40
31	Comparison of optical coherence tomography imaging of cataracts with histopathology. <i>Journal of Biomedical Optics</i> , 1999 , 4, 450-8	3.5	16
30	High-resolution optical coherence tomography-guided laser ablation of surgical tissue. <i>Journal of Surgical Research</i> , 1999 , 82, 275-84	2.5	106
29	HIGH-RESOLUTION IMAGING OF GYNECOLOGIC NEOPLASMS USING OPTICAL COHERENCE TOMOGRAPHY. <i>Obstetrics and Gynecology</i> , 1999 , 93, 135-139	4.9	77

High-resolution in-vivo intra-arterial imaging with optical coherence tomography **1999**, 3590, 324

27	Endoscopic optical coherence tomography imaging for surgical diagnostics and guidance in the gastrointestinal tract 1999 , 3595, 158		
26	Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. <i>Digestive Diseases and Sciences</i> , 1998 , 43, 1193-9	4	51
25	In vivo cellular optical coherence tomography imaging. <i>Nature Medicine</i> , 1998 , 4, 861-5	50.5	212
24	Optical biopsy with optical coherence tomography. <i>Annals of the New York Academy of Sciences</i> , 1998 , 838, 68-74	6.5	31
23	New technology for high-speed and high-resolution optical coherence tomography. <i>Annals of the New York Academy of Sciences</i> , 1998 , 838, 95-107	6.5	66
22	Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography. <i>Fertility and Sterility</i> , 1998 , 70, 155-8	4.8	33
21	Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography. <i>Radiology</i> , 1998 , 208, 81-6	20.5	90
20	Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. <i>Neurosurgery</i> , 1998 , 43, 834-41	3.2	101
19	Optical Coherence Tomography using Femtosecond Lasers. <i>Springer Series in Chemical Physics</i> , 1998 , 150-152	0.3	
18	In-Vivo Catheter-Based Imaging with Optical Coherence Tomography 1998,		1
17	Endoscopic optical coherence tomography 1997 ,		1
16	Mode-locked solid state laser sources for optical coherence tomography 1997,		2
15	Argon laser retinal lesions evaluated in vivo by optical coherence tomography. <i>American Journal of Ophthalmology</i> , 1997 , 123, 188-98	4.9	62
14	In vivo endoscopic optical biopsy with optical coherence tomography. <i>Science</i> , 1997 , 276, 2037-9	33.3	1060
13	Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. <i>Journal of Surgical Research</i> , 1997 , 71, 32-40	2.5	93
12	Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 4256-61	11.5	138
11	Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. <i>Optics Letters</i> , 1996 , 21, 912	3	13
11	Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum.	3	13

LIST OF PUBLICATIONS

10	Investigation of developing embryonic morphology using optical coherence tomography. <i>Developmental Biology</i> , 1996 , 177, 54-63	3.1	96
9	Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. <i>American Journal of Cardiology</i> , 1996 , 77, 92-3	3	131
8	Imaging developing neural morphology using optical coherence tomography. <i>Journal of Neuroscience Methods</i> , 1996 , 70, 65-72	3	59
7	Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. <i>Circulation</i> , 1996 , 94, 3013	16.7	7 ²
6	Optical biopsy and imaging using optical coherence tomography. <i>Nature Medicine</i> , 1995 , 1, 970-2	50.5	660
5	High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. <i>Optics Letters</i> , 1995 , 20, 1486-8	3	231
4	A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment. <i>IEEE Journal of Quantum Electronics</i> , 1995 , 31, 2250-2257	2	94
3	New noninvasive imaging technique for cataract evaluation in the rhesus monkey 1995,		2
2	A flexible perforated microelectrode array for extended neural recordings. <i>IEEE Transactions on Biomedical Engineering</i> , 1992 , 39, 37-42	5	94
1	flimview: A software framework to handle, visualize and analyze FLIM data. F1000Research,9, 574	3.6	O