Stephen A Boppart

List of Publications by Citations

Source: https://exaly.com/author-pdf/6886737/stephen-a-boppart-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

423 papers

15,732 citations

65 h-index

110 g-index

528 ext. papers

18,961 ext. citations

4./
avg, IF

6.54 L-index

#	Paper	IF	Citations
423	In vivo endoscopic optical biopsy with optical coherence tomography. <i>Science</i> , 1997 , 276, 2037-9	33.3	1060
422	Optical biopsy and imaging using optical coherence tomography. <i>Nature Medicine</i> , 1995 , 1, 970-2	50.5	660
421	Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. <i>Neoplasia</i> , 2000 , 2, 9-25	6.4	568
420	Optical coherence tomography: a review of clinical development from bench to bedside. <i>Journal of Biomedical Optics</i> , 2007 , 12, 051403	3.5	349
419	Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. <i>IEEE Transactions on Biomedical Engineering</i> , 2010 , 57, 953-9	5	286
418	Interferometric synthetic aperture microscopy. <i>Nature Physics</i> , 2007 , 3, 129-134	16.2	275
417	Intraoperative evaluation of breast tumor margins with optical coherence tomography. <i>Cancer Research</i> , 2009 , 69, 8790-6	10.1	259
416	Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. <i>Nano Letters</i> , 2007 , 7, 861-7	11.5	250
415	High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. <i>Optics Letters</i> , 1995 , 20, 1486-8	3	231
414	In vivo cellular optical coherence tomography imaging. <i>Nature Medicine</i> , 1998 , 4, 861-5	50.5	212
413	Optical coherence tomography: advanced technology for the endoscopic imaging of Barretts esophagus. <i>Endoscopy</i> , 2000 , 32, 921-30	3.4	199
412	Selective in vivo metabolic cell-labeling-mediated cancer targeting. <i>Nature Chemical Biology</i> , 2017 , 13, 415-424	11.7	188
411	Engineered microsphere contrast agents for optical coherence tomography. <i>Optics Letters</i> , 2003 , 28, 1546-8	3	187
410	Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer. <i>Breast Cancer Research and Treatment</i> , 2004 , 84, 85-97	4.4	174
409	Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography. <i>Optics Express</i> , 2006 , 14, 6724-38	3.3	143
408	Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 4256-61	11.5	138
407	Imaging of coronary artery microstructure (in vitro) with optical coherence tomography. <i>American Journal of Cardiology</i> , 1996 , 77, 92-3	3	131

406	Magnetomotive contrast for in vivo optical coherence tomography. <i>Optics Express</i> , 2005 , 13, 6597-614	3.3	128
405	Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. <i>American Journal of Cardiology</i> , 2000 , 85, 641-4	3	127
404	Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. <i>Journal of Gastroenterology</i> , 2000 , 35, 87-92	6.9	126
403	Stain-free histopathology by programmable supercontinuum pulses. <i>Nature Photonics</i> , 2016 , 10, 534-54	10,3.9	125
402	Computational adaptive optics for broadband optical interferometric tomography of biological tissue. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7175-	·810 ^{1.5}	124
401	In vivo three-dimensional optical coherence elastography. <i>Optics Express</i> , 2011 , 19, 6623-34	3.3	123
400	Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. <i>Optics Letters</i> , 2004 , 29, 1647-9	3	120
399	Fourier transform light scattering of inhomogeneous and dynamic structures. <i>Physical Review Letters</i> , 2008 , 101, 238102	7.4	116
398	Intravital imaging by simultaneous label-free autofluorescence-multiharmonic microscopy. <i>Nature Communications</i> , 2018 , 9, 2125	17.4	109
397	Optical micro-scale mapping of dynamic biomechanical tissue properties. <i>Optics Express</i> , 2008 , 16, 1105	2 ₃ 65	108
396	Tumor targeting by surface-modified protein microspheres. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3472-3	16.4	106
395	High-resolution optical coherence tomography-guided laser ablation of surgical tissue. <i>Journal of Surgical Research</i> , 1999 , 82, 275-84	2.5	106
394	Optical probes and techniques for molecular contrast enhancement in coherence imaging. <i>Journal of Biomedical Optics</i> , 2005 , 10, 41208	3.5	105
393	Handheld optical coherence tomography scanner for primary care diagnostics. <i>IEEE Transactions on Biomedical Engineering</i> , 2011 , 58, 741-4	5	103
392	Optical coherence tomography for neurosurgical imaging of human intracortical melanoma. <i>Neurosurgery</i> , 1998 , 43, 834-41	3.2	101
391	Optical coherence elastography of engineered and developing tissue. <i>Tissue Engineering</i> , 2006 , 12, 63-7	'3	100
390	Imaging magnetically labeled cells with magnetomotive optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 747-9	3	97
389	Nonlinear interferometric vibrational imaging. <i>Physical Review Letters</i> , 2004 , 92, 123905	7.4	96

388	Investigation of developing embryonic morphology using optical coherence tomography. <i>Developmental Biology</i> , 1996 , 177, 54-63	3.1	96
387	Computational high-resolution optical imaging of the living human retina. <i>Nature Photonics</i> , 2015 , 9, 440-443	33.9	95
386	In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 8085-90	11.5	94
385	A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. II. Comparison to experiment. <i>IEEE Journal of Quantum Electronics</i> , 1995 , 31, 2250-2257	2	94
384	A flexible perforated microelectrode array for extended neural recordings. <i>IEEE Transactions on Biomedical Engineering</i> , 1992 , 39, 37-42	5	94
383	Optical biopsy with optical coherence tomography: feasibility for surgical diagnostics. <i>Journal of Surgical Research</i> , 1997 , 71, 32-40	2.5	93
382	Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. <i>Optics Letters</i> , 2002 , 27, 2010-2	3	93
381	Inverse scattering for optical coherence tomography. <i>Journal of the Optical Society of America A:</i> Optics and Image Science, and Vision, 2006 , 23, 1027-37	1.8	91
380	Microscopic imaging and spectroscopy with scattered light. <i>Annual Review of Biomedical Engineering</i> , 2010 , 12, 285-314	12	90
379	Intraoperative assessment of microsurgery with three-dimensional optical coherence tomography. <i>Radiology</i> , 1998 , 208, 81-6	20.5	90
378	Real-time Imaging of the Resection Bed Using a Handheld Probe to Reduce Incidence of Microscopic Positive Margins in Cancer Surgery. <i>Cancer Research</i> , 2015 , 75, 3706-12	10.1	87
377	Coherent fiber supercontinuum for biophotonics. <i>Laser and Photonics Reviews</i> , 2013 , 7, 628	8.3	86
376	Computational methods for analysis of human breast tumor tissue in optical coherence tomography images. <i>Journal of Biomedical Optics</i> , 2006 , 11, 054015	3.5	83
375	Noninvasive in vivo optical detection of biofilm in the human middle ear. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 9529-34	11.5	82
374	Nonlinear optical contrast enhancement for optical coherence tomography. <i>Optics Express</i> , 2004 , 12, 331-41	3.3	80
373	Spectroscopic spectral-domain optical coherence microscopy. <i>Optics Letters</i> , 2006 , 31, 1079-81	3	79
372	Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials. <i>Optics Express</i> , 2009 , 17, 23114-22	3.3	78
371	High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2006 , 11, 34001	3.5	77

(2003-1999)

370	HIGH-RESOLUTION IMAGING OF GYNECOLOGIC NEOPLASMS USING OPTICAL COHERENCE TOMOGRAPHY. <i>Obstetrics and Gynecology</i> , 1999 , 93, 135-139	4.9	77	
369	Intraoperative Assessment of Final Margins with a Handheld Optical Imaging Probe During Breast-Conserving Surgery May Reduce the Reoperation Rate: Results of a Multicenter Study. Annals of Surgical Oncology, 2015 , 22, 3356-62	3.1	75	
368	Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography. <i>Journal of Materials Chemistry</i> , 2009 , 19, 6407		74	
367	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. <i>Optics Express</i> , 2008 , 16, 11525	3.3	74	
366	Images in cardiovascular medicine. Catheter-based optical imaging of a human coronary artery. <i>Circulation</i> , 1996 , 94, 3013	16.7	72	
365	Spectroscopic optical coherence elastography. <i>Optics Express</i> , 2010 , 18, 25519-34	3.3	71	
364	Wavelength-dependent scattering in spectroscopic optical coherence tomography. <i>Optics Express</i> , 2005 , 13, 5450-62	3.3	71	
363	Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. <i>Water Research</i> , 2013 , 47, 2531-42	12.5	70	
362	Optical coherence tomography of cell dynamics in three-dimensional tissue models. <i>Optics Express</i> , 2006 , 14, 7159-71	3.3	70	
361	Real-time computed optical interferometric tomography. <i>Nature Photonics</i> , 2013 , 7, 444-448	33.9	68	
360	Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. <i>Environmental Science & amp; Technology</i> , 2015 , 49, 4274-82	10.3	67	
359	New technology for high-speed and high-resolution optical coherence tomography. <i>Annals of the New York Academy of Sciences</i> , 1998 , 838, 95-107	6.5	66	
358	Review of optical coherence tomography in oncology. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-23	3.5	64	
357	Digital algorithm for dispersion correction in optical coherence tomography for homogeneous and stratified media. <i>Applied Optics</i> , 2003 , 42, 204-17	1.7	64	
356	Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues. <i>Optics Express</i> , 2008 , 16, 11525-39	3.3	64	
355	Argon laser retinal lesions evaluated in vivo by optical coherence tomography. <i>American Journal of Ophthalmology</i> , 1997 , 123, 188-98	4.9	62	
354	Speckle reduction by I-divergence regularization in optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2005 , 22, 2366-71	1.8	62	
353	Functional optical coherence tomography for detecting neural activity through scattering changes. Optics Letters, 2003, 28, 1218-20	3	62	

352	Point-of-care and point-of-procedure optical imaging technologies for primary care and global health. <i>Science Translational Medicine</i> , 2014 , 6, 253rv2	17.5	61
351	Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy. <i>Applied Physics Letters</i> , 2006 , 88, 053901	3.4	61
350	Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm. <i>Optics Express</i> , 2004 , 12, 4790-803	3.3	61
349	Optical coherence tomography: the intraoperative assessment of lymph nodes in breast cancer. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2010 , 29, 63-70		60
348	Use of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5673-8	4.8	60
347	Optical biopsy of lymph node morphology using optical coherence tomography. <i>Technology in Cancer Research and Treatment</i> , 2005 , 4, 539-48	2.7	59
346	Imaging developing neural morphology using optical coherence tomography. <i>Journal of Neuroscience Methods</i> , 1996 , 70, 65-72	3	59
345	Optical coherence tomography: technology and applications for neuroimaging. <i>Psychophysiology</i> , 2003 , 40, 529-41	4.1	58
344	Real-time interferometric synthetic aperture microscopy. <i>Optics Express</i> , 2008 , 16, 2555-69	3.3	56
343	Structural and functional imaging of 3D microfluidic mixers using optical coherence tomography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7516-21	11.5	56
342	Imaging and analysis of three-dimensional cell culture models. <i>Methods in Molecular Biology</i> , 2010 , 591, 211-27	1.4	55
341	Refractive index of carcinogen-induced rat mammary tumours. <i>Physics in Medicine and Biology</i> , 2006 , 51, 2165-77	3.8	55
340	Structural and functional optical imaging of three-dimensional engineered tissue development. <i>Tissue Engineering</i> , 2004 , 10, 1747-56		54
339	Autofocus algorithm for dispersion correction in optical coherence tomography. <i>Applied Optics</i> , 2003 , 42, 3038-46	1.7	54
338	Full-range k-domain linearization in spectral-domain optical coherence tomography. <i>Applied Optics</i> , 2011 , 50, 1158-63	0.2	53
337	Dynamic spectral-domain optical coherence elastography for tissue characterization. <i>Optics Express</i> , 2010 , 18, 14183-90	3.3	53
336	Imaging engineered tissues using structural and functional optical coherence tomography. <i>Journal of Biophotonics</i> , 2009 , 2, 643-55	3.1	53
335	Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. Journal of Biomedical Optics, 2006, 11, 021014	3.5	53

(2015-2010)

334	Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography. <i>Physics in Medicine and Biology</i> , 2010 , 55, 1189-201	3.8	52
333	Characterization and Analysis of Relative Intensity Noise in Broadband Optical Sources for Optical Coherence Tomography. <i>IEEE Photonics Technology Letters</i> , 2010 , 22, 1057-1059	2.2	52
332	Optical properties of tissues quantified by Fourier-transform light scattering. <i>Optics Letters</i> , 2009 , 34, 1372-4	3	52
331	Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation. <i>Optics Express</i> , 2009 , 17, 9858-72	3.3	52
330	Optical biopsy in human pancreatobiliary tissue using optical coherence tomography. <i>Digestive Diseases and Sciences</i> , 1998 , 43, 1193-9	4	51
329	Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media. <i>Laryngoscope</i> , 2015 , 125, E276-82	3.6	50
328	In vivo detection of exercised-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. <i>Optics Express</i> , 2006 , 14, 1547-56	3.3	50
327	Tailoring hydrogel adhesion to polydimethylsiloxane substrates using polysaccharide glue. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6949-52	16.4	49
326	Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression. <i>Optics Letters</i> , 2012 , 37, 2172-4	3	49
325	Spectroscopic Optical Coherence Tomography and Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2007 , 13, 1629-1640	3.8	48
324	Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography. <i>Biomedical Optics Express</i> , 2014 , 5, 3417-26	3.5	47
323	DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW. Journal of Innovative Optical Health Sciences, 2010 , 3, 221-233	1.2	47
322	Inverse scattering for frequency-scanned full-field optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 1034-41	1.8	47
321	Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. <i>IEEE Transactions on Image Processing</i> , 2005 , 14, 1254-64	8.7	47
320	Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes. <i>Applied Physics Letters</i> , 2004 , 85, 5787-5789	3.4	46
319	Optical coherence tomography for advanced screening in the primary care office. <i>Journal of Biophotonics</i> , 2014 , 7, 525-33	3.1	45
318	Intraoperative visualization of the tumor microenvironment and quantification of extracellular vesicles by label-free nonlinear imaging. <i>Science Advances</i> , 2018 , 4, eaau5603	14.3	45
317	Non-invasive, real-time reporting drug release in vitro and in vivo. <i>Chemical Communications</i> , 2015 , 51, 6948-51	5.8	44

316	Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. <i>Environmental Science & Environmental &</i>	10.3	44
315	Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation. <i>Journal of Lightwave Technology</i> , 2015 , 33, 1814-1820	4	44
314	Acoustomotive optical coherence elastography for measuring material mechanical properties. <i>Optics Letters</i> , 2009 , 34, 2894-6	3	44
313	Targeted multifunctional multimodal protein-shell microspheres as cancer imaging contrast agents. <i>Molecular Imaging and Biology</i> , 2012 , 14, 17-24	3.8	42
312	Nonparaxial vector-field modeling of optical coherence tomography and interferometric synthetic aperture microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 2527-42	1.8	42
311	Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser. <i>Optics Express</i> , 2012 , 20, 1113-28	3.3	41
310	Magnetomotive optical coherence elastography for microrheology of biological tissues. <i>Journal of Biomedical Optics</i> , 2013 , 18, 121504	3.5	40
309	Optical imaging technology in minimally invasive surgery. Current status and future directions. <i>Surgical Endoscopy and Other Interventional Techniques</i> , 1999 , 13, 718-22	5.2	40
308	Needle-based refractive index measurement using low-coherence interferometry. <i>Optics Letters</i> , 2007 , 32, 385-7	3	39
307	Intraoperative optical coherence tomography for assessing human lymph nodes for metastatic cancer. <i>BMC Cancer</i> , 2016 , 16, 144	4.8	38
306	Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. <i>Optics Letters</i> , 2011 , 36, 2281-3	3	38
305	Molecular histopathology by spectrally reconstructed nonlinear interferometric vibrational imaging. <i>Cancer Research</i> , 2010 , 70, 9562-9	10.1	38
304	High resolution imaging of endometriosis and ovarian carcinoma with optical coherence tomography: feasibility for laparoscopic-based imaging. <i>BJOG: an International Journal of Obstetrics and Gynaecology</i> , 1999 , 106, 1071-7	3.7	38
303	Computed optical interferometric tomography for high-speed volumetric cellular imaging. <i>Biomedical Optics Express</i> , 2014 , 5, 2988-3000	3.5	37
302	Numerical analysis of gradient index lens-based optical coherence tomography imaging probes. Journal of Biomedical Optics, 2010 , 15, 066027	3.5	37
301	Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear. <i>Biomedical Optics Express</i> , 2010 , 1, 1104-1116	3.5	37
300	Molecularly sensitive optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 495-7	3	37
299	Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements. <i>Hearing Research</i> , 2013 , 301, 193-200	3.9	36

298	Inverse scattering for high-resolution interferometric microscopy. <i>Optics Letters</i> , 2006 , 31, 3585-7	3	36
297	Non-invasive optical assessment of viscosity of middle ear effusions in otitis media. <i>Journal of Biophotonics</i> , 2017 , 10, 394-403	3.1	35
296	Multimodal Skin Imaging with Integrated Optical Coherence and Multiphoton Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 1280-1286	3.8	35
295	Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system. <i>Biomedical Optics Express</i> , 2012 , 3, 1149-61	3.5	35
294	Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography. <i>Applied Optics</i> , 2005 , 44, 1813-22	1.7	35
293	Computational optical coherence tomography [Invited]. <i>Biomedical Optics Express</i> , 2017 , 8, 1549-1574	3.5	34
292	Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. <i>Technology in Cancer Research and Treatment</i> , 2009 , 8, 315-21	2.7	34
291	Magnetomotive optical coherence elastography using magnetic particles to induce mechanical waves. <i>Biomedical Optics Express</i> , 2014 , 5, 2349-61	3.5	33
290	Real-Time Optical Coherence Tomography for Minimally Invasive Imaging of Prostate Ablation. <i>Computer Aided Surgery</i> , 2001 , 6, 94-103		33
289	Two- and three-dimensional high-resolution imaging of the human oviduct with optical coherence tomography. <i>Fertility and Sterility</i> , 1998 , 70, 155-8	4.8	33
288	Clinical translation of handheld optical coherence tomography: practical considerations and recent advancements. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-30	3.5	33
287	Integrated multimodal optical microscopy for structural and functional imaging of engineered and natural skin. <i>Journal of Biophotonics</i> , 2012 , 5, 437-48	3.1	32
286	Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography. <i>Optics Express</i> , 2009 , 17, 8125-36	3.3	32
285	Guide-star-based computational adaptive optics for broadband interferometric tomography. <i>Applied Physics Letters</i> , 2012 , 101, 221117	3.4	31
284	Optical biopsy with optical coherence tomography. <i>Annals of the New York Academy of Sciences</i> , 1998 , 838, 68-74	6.5	31
283	Interferometric Synthetic Aperture Microscopy: Computed Imaging for Scanned Coherent Microscopy. <i>Sensors</i> , 2008 , 8, 3903-3931	3.8	31
282	Three-dimensional motion correction using speckle and phase for in vivo computed optical interferometric tomography. <i>Biomedical Optics Express</i> , 2014 , 5, 4131-43	3.5	30
281	Multimodal Nonlinear Microscopy by Shaping a Fiber Supercontinuum From 900 to 1160 nm. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18,	3.8	30

280	Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging. <i>Optics Express</i> , 2009 , 17, 13447-57	3.3	30
279	Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography. <i>Quantitative Imaging in Medicine and Surgery</i> , 2015 , 5, 69-77	3.6	30
278	Label-free visualization and characterization of extracellular vesicles in breast cancer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24012-24018	11.5	30
277	Stability in computed optical interferometric tomography (part I): stability requirements. <i>Optics Express</i> , 2014 , 22, 19183-97	3.3	29
276	Scalar generalized nonlinear Schridinger equation-quantified continuum generation in an all-normal dispersion photonic crystal fiber for broadband coherent optical sources. <i>Optics Express</i> , 2010 , 18, 27872-84	3.3	28
275	All-fiber femtosecond Cherenkov radiation source. <i>Optics Letters</i> , 2012 , 37, 2769-71	3	28
274	Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner. <i>Applied Optics</i> , 2003 , 42, 4606-11	1.7	28
273	Noninvasive in vivo optical coherence tomography tracking of chronic otitis media in pediatric subjects after surgical intervention. <i>Journal of Biomedical Optics</i> , 2017 , 22, 1-11	3.5	28
272	High speed nonlinear interferometric vibrational analysis of lipids by spectral decomposition. <i>Analytical Chemistry</i> , 2010 , 82, 3812-8	7.8	27
271	Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography. <i>IEEE Transactions on Biomedical Engineering</i> , 2004 , 51, 186-90	5	27
270	Concurrence of extracellular vesicle enrichment and metabolic switch visualized label-free in the tumor microenvironment. <i>Science Advances</i> , 2017 , 3, e1600675	14.3	26
269	Correction of coherence gate curvature in high numerical aperture optical coherence imaging. <i>Optics Letters</i> , 2010 , 35, 3120-2	3	26
268	Projected index computed tomography. <i>Optics Letters</i> , 2003 , 28, 701-3	3	26
267	Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment. <i>Journal of Biomedical Optics</i> , 2017 , 23, 1-10	3.5	26
266	Raman Spectroscopic Analysis Reveals Abnormal Fatty Acid Composition in Tumor Micro- and Macroenvironments in Human Breast and Rat Mammary Cancer. <i>Scientific Reports</i> , 2016 , 6, 32922	4.9	25
265	Three-dimensional optical coherence tomography for optical biopsy of lymph nodes and assessment of metastatic disease. <i>Annals of Surgical Oncology</i> , 2013 , 20, 3685-93	3.1	25
264	Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum. <i>Optics Express</i> , 2013 , 21, 8269-75	3.3	24
263	Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs. Microscopy Research and Technique, 2007, 70, 361-71	2.8	24

(2010-2006)

262	High-spectral-resolution coherent anti-Stokes Raman scattering with interferometrically detected broadband chirped pulses. <i>Optics Letters</i> , 2006 , 31, 1543-5	3	24
261	High-speed imaging of transient metabolic dynamics using two-photon fluorescence lifetime imaging microscopy. <i>Optica</i> , 2018 , 5, 1290-1296	8.6	24
2 60	Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses. <i>Optics Express</i> , 2013 , 21, 23188-96	3.3	23
259	Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography. <i>Optics Letters</i> , 2010 , 35, 1683-5	3	23
258	Low-cost hand-held probe for depth-resolved low-coherence interferometry. <i>Biomedical Optics Express</i> , 2017 , 8, 338-348	3.5	22
257	In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin. <i>Cellular and Molecular Bioengineering</i> , 2011 , 4, 231-238	3.9	22
256	Slide-free virtual histochemistry (Part I): development via nonlinear optics. <i>Biomedical Optics Express</i> , 2018 , 9, 5240-5252	3.5	22
255	Progress in Cherenkov femtosecond fiber lasers. <i>Journal Physics D: Applied Physics</i> , 2016 , 49,	3	22
254	Quantitative FRET imaging to visualize the invasiveness of live breast cancer cells. <i>PLoS ONE</i> , 2013 , 8, e58569	3.7	21
253	Label-free in vivo cellular-level detection and imaging of apoptosis. <i>Journal of Biophotonics</i> , 2017 , 10, 143-150	3.1	20
252	Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 15	8.2	20
251	Partially coherent illumination in full-field interferometric synthetic aperture microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2009 , 26, 376-86	1.8	20
250	Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy. <i>Optics Letters</i> , 2007 , 32, 1441-3	3	20
249	Slide-free virtual histochemistry (Part II): detection of field cancerization. <i>Biomedical Optics Express</i> , 2018 , 9, 5253-5268	3.5	20
248	Large-scale tumor-associated collagen signatures identify high-risk breast cancer patients. <i>Theranostics</i> , 2021 , 11, 3229-3243	12.1	20
247	Lymphatic Biodistribution of Polylactide Nanoparticles. <i>Molecular Imaging</i> , 2010 , 9, 7290.2010.00012	3.7	19
246	Magnetomotive molecular nanoprobes. Current Medicinal Chemistry, 2011, 18, 2103-14	4.3	19
245	Fourier Transform Light Scattering (FTLS) of Cells and Tissues. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 2501-2511	0.3	19

244	Needle-based reflection refractometry of scattering samples using coherence-gated detection. <i>Optics Express</i> , 2007 , 15, 4787-94	3.3	19
243	Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification. <i>Lasers in Surgery and Medicine</i> , 2017 , 49, 240-248	3.6	18
242	A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2016 , 17, 403-16	3.3	18
241	Stability in computed optical interferometric tomography (Part II): in vivo stability assessment. <i>Optics Express</i> , 2014 , 22, 19314-26	3.3	18
240	Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin 2013 , 1, 8-19		18
239	Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus. <i>Optics Letters</i> , 2011 , 36, 2315-7	3	18
238	Novel method for non-invasive induction of a middle-ear biofilm in the rat. <i>Vaccine</i> , 2011 , 29, 1628-33	4.1	18
237	Biophotonics: the big picture. <i>Journal of Biomedical Optics</i> , 2017 , 23, 1-7	3.5	18
236	Digital staining through the application of deep neural networks to multi-modal multi-photon microscopy. <i>Biomedical Optics Express</i> , 2019 , 10, 1339-1350	3.5	18
235	Direct Analysis of Pathogenic Structures Affixed to the Tympanic Membrane during Chronic Otitis Media. <i>Otolaryngology - Head and Neck Surgery</i> , 2018 , 159, 117-126	5.5	17
234	Automated computational aberration correction method for broadband interferometric imaging techniques. <i>Optics Letters</i> , 2016 , 41, 3324-7	3	17
233	Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber. <i>Applied Physics Letters</i> , 2009 , 94, 101109	3.4	17
232	Ultraviolet-visible non-supercontinuum ultrafast source enabled by switching single silicon strand-like photonic crystal fibers. <i>Optics Express</i> , 2009 , 17, 17983-8	3.3	17
231	Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING. <i>Journal of Innovative Optical Health Sciences</i> , 2009 , 2, 387-396	1.2	17
230	In vivo detection of nanometer-scale structural changes of the human tympanic membrane in otitis media. <i>Scientific Reports</i> , 2018 , 8, 8777	4.9	16
229	Longitudinal label-free tracking of cell death dynamics in living engineered human skin tissue with a multimodal microscope. <i>Biomedical Optics Express</i> , 2014 , 5, 3699-716	3.5	16
228	Comparison of optical coherence tomography imaging of cataracts with histopathology. <i>Journal of Biomedical Optics</i> , 1999 , 4, 450-8	3.5	16
227	Complementary use of polarization-sensitive and standard OCT metrics for enhanced intraoperative differentiation of breast cancer. <i>Biomedical Optics Express</i> , 2018 , 9, 6519-6528	3.5	16

(2016-2015)

226	Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres. <i>Physics in Medicine and Biology</i> , 2015 , 60, 727-39	3.8	15
225	Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22,	3.8	15
224	Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2017 , 18, 555-568	3.3	15
223	Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy. <i>Biomedical Optics Express</i> , 2015 , 6, 4277-87	3.5	15
222	High Resolution Phase-Sensitive Magnetomotive Optical Coherence Microscopy for Tracking Magnetic Microbeads and Cellular Mechanics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2014 , 20,	3.8	15
221	Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 034019	3.5	15
220	Detection of retinal blood vessel changes in multiple sclerosis with optical coherence tomography. <i>Biomedical Optics Express</i> , 2016 , 7, 2321-30	3.5	15
219	Real-time intraoperative diagnosis by deep neural network driven multiphoton virtual histology. <i>Npj Precision Oncology</i> , 2019 , 3, 33	9.8	15
218	Automated classification platform for the identification of otitis media using optical coherence tomography. <i>Npj Digital Medicine</i> , 2019 , 2, 22	15.7	14
217	Imaging and tracking of bone marrow-derived immune and stem cells. <i>Methods in Molecular Biology</i> , 2013 , 1052, 57-76	1.4	14
217		3.8	14
	, 2013 , 1052, 57-76 Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum</i>	<u>'</u>	
216	, 2013, 1052, 57-76 Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009, 16, 671-697 High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to	3.8	14
216	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 671-697 High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 824-832 Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon	3.8	14
216 215 214	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 671-697 High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 824-832 Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics. <i>Biomedical Microdevices</i> , 2005 , 7, 7-12 Simultaneous label-free autofluorescence and multi-harmonic imaging reveals structural and	3.8 3.8 3.7	14 14 14
216 215 214 213	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 671-697 High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 824-832 Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics. <i>Biomedical Microdevices</i> , 2005 , 7, 7-12 Simultaneous label-free autofluorescence and multi-harmonic imaging reveals structural and metabolic changes in murine skin. <i>Biomedical Optics Express</i> , 2019 , 10, 5431-5444 Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime	3.8 3.8 3.7 3.5	14 14 14
216 215 214 213	Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 671-697 High-Speed Nonlinear Interferometric Vibrational Imaging of Biological Tissue With Comparison to Raman Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2009 , 16, 824-832 Evaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics. <i>Biomedical Microdevices</i> , 2005 , 7, 7-12 Simultaneous label-free autofluorescence and multi-harmonic imaging reveals structural and metabolic changes in murine skin. <i>Biomedical Optics Express</i> , 2019 , 10, 5431-5444 Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy. <i>Biomedical Optics Express</i> , 2019 , 10, 6408-6421 Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging.	3.8 3.8 3.7 3.5	14 14 14 14

208	Combined hardware and computational optical wavefront correction. <i>Biomedical Optics Express</i> , 2018 , 9, 2562-2574	3.5	13
207	Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation. <i>Photonics Research</i> , 2017 , 5, 750-761	6	13
206	In vivo multimodal microscopy for detecting bone-marrow-derived cell contribution to skin regeneration. <i>Journal of Biophotonics</i> , 2014 , 7, 96-102	3.1	13
205	Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography: erratum. <i>Optics Letters</i> , 1996 , 21, 912	3	13
204	In vivo 3D imaging of the human tympanic membrane using a wide-field diagonal-scanning optical coherence tomography probe. <i>Applied Optics</i> , 2017 , 56, D115-D119	0.2	13
203	Optical coherence tomography imaging in developmental biology. <i>Methods in Molecular Biology</i> , 2000 , 135, 217-33	1.4	13
202	Otitis Media Middle Ear Effusion Identification and Characterization Using an Optical Coherence Tomography Otoscope. <i>Otolaryngology - Head and Neck Surgery</i> , 2020 , 162, 367-374	5.5	12
201	Wavefront measurement using computational adaptive optics. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2018 , 35, 466-473	1.8	12
200	Stiffness-modulated water retention and neovascularization of dermal fibroblast-encapsulating collagen gel. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1275-84	3.9	12
199	Inverse scattering for rotationally scanned optical coherence tomography. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2006 , 23, 2433-9	1.8	12
198	Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images. Journal of Biomedical Optics, 2004 , 9, 1281-7	3.5	12
197	Investigating the healing mechanisms of an angiogenesis-promoting topical treatment for diabetic wounds using multimodal microscopy. <i>Journal of Biophotonics</i> , 2018 , 11, e201700195	3.1	11
196	Multifocal interferometric synthetic aperture microscopy. <i>Optics Express</i> , 2014 , 22, 16606-18	3.3	11
195	Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy. <i>Optics Express</i> , 2014 , 22, 201	3 <i>8</i> -43	11
194	Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using IIB integrin-targeted microspheres. <i>Molecular Imaging and Biology</i> , 2014 , 16, 36-43	3.8	11
193	Low-Noise Operation of All-Fiber Femtosecond Cherenkov Laser. <i>IEEE Photonics Technology Letters</i> , 2013 , 25, 892-895	2.2	11
192	Dual-coil magnetomotive optical coherence tomography for contrast enhancement in liquids. <i>Optics Express</i> , 2013 , 21, 7139-47	3.3	11
191	Nonlinear interferometric vibrational imaging for fast label-free visualization of molecular domains in skin. <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 400, 2817-25	4.4	11

190	Sonification of optical coherence tomography data and images. Optics Express, 2010, 18, 9934-44	3.3	11
189	Aberration characterization for the optimal design of high-resolution endoscopic optical coherence tomography catheters. <i>Optics Letters</i> , 2012 , 37, 1100-2	3	11
188	Plasmon-resonant gold nanorods provide spectroscopic OCT contrast in excised human breast tumors 2008 ,		11
187	Stabilization of continuum generation from normally dispersive nonlinear optical fibers for a tunable broad bandwidth source for optical coherence tomography. <i>Optics Letters</i> , 2007 , 32, 2037-9	3	11
186	Emergency ventilator for COVID-19. <i>PLoS ONE</i> , 2020 , 15, e0244963	3.7	11
185	Real-time optical coherence tomography for minimally invasive imaging of prostate ablation. <i>Computer Aided Surgery</i> , 2001 , 6, 94-103		11
184	Intra-operative imaging of surgical margins of canine soft tissue sarcoma using optical coherence tomography. <i>Veterinary and Comparative Oncology</i> , 2019 , 17, 80-88	2.5	11
183	Disintegration of simulated drinking water biofilms with arrays of microchannel plasma jets. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 24	8.2	11
182	Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure. <i>Biomedical Optics Express</i> , 2018 , 9, 397-409	3.5	10
181	Cross-validation of theoretically quantified fiber continuum generation and absolute pulse measurement by MIIPS for a broadband coherently controlled optical source. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 106, 379-384	1.9	10
180	In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. <i>Biomedical Optics Express</i> , 2013 , 4, 1817-28	3.5	10
179	Economical and compact briefcase spectral-domain optical coherence tomography system for primary care and point-of-care applications. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-11	3.5	10
178	Modern Trends in Imaging V: Optical Coherence Tomography for Rapid Tissue Screening and Directed Histological Sectioning. <i>Analytical Cellular Pathology</i> , 2012 , 35, 129-143	3.4	10
177	Longitudinal in vivo tracking of adverse effects following topical steroid treatment. <i>Experimental Dermatology</i> , 2016 , 25, 362-7	4	10
176	Optical assessment of the in vivo tympanic membrane status using a handheld optical coherence tomography-based otoscope. <i>Acta Oto-Laryngologica</i> , 2018 , 138, 367-374	1.6	10
175	Simultaneous label-free autofluorescence-multiharmonic microscopy and beyond. <i>APL Photonics</i> , 2019 , 4,	5.2	9
174	Intravascular magnetomotive optical coherence tomography of targeted early-stage atherosclerotic changes in ex vivo hyperlipidemic rabbit aortas. <i>Journal of Biophotonics</i> , 2016 , 9, 109-16	3.1	9
173	Coherent control of an opsin in living brain tissue. <i>Nature Physics</i> , 2017 , 13, 1111-1116	16.2	9

172	SEGMENTATION AND CORRELATION OF OPTICAL COHERENCE TOMOGRAPHY AND X-RAY IMAGES FOR BREAST CANCER DIAGNOSTICS. <i>Journal of Innovative Optical Health Sciences</i> , 2013 , 6, 1350015	1.2	9
171	Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system 2005 ,		9
170	Interstitial magnetic thermotherapy dosimetry based on shear wave magnetomotive optical coherence elastography. <i>Biomedical Optics Express</i> , 2019 , 10, 539-551	3.5	9
169	Biomechanical sensing of magnetic nanoparticle hyperthermia-treated melanoma using magnetomotive optical coherence elastography. <i>Theranostics</i> , 2021 , 11, 5620-5633	12.1	9
168	Magnetomotive Displacement of the Tympanic Membrane Using Magnetic Nanoparticles: Toward Enhancement of Sound Perception. <i>IEEE Transactions on Biomedical Engineering</i> , 2018 , 65, 2837-2846	5	8
167	Volumetric full-range magnetomotive optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2014 , 19, 126001	3.5	8
166	High-speed processing architecture for spectral-domain optical coherence microscopy. <i>Journal of Biomedical Optics</i> , 2008 , 13, 044013	3.5	8
165	Magnetic contrast agents for optical coherence tomography 2004,		8
164	Rapid diagnosis and differentiation of microbial pathogens in otitis media with a combined Raman spectroscopy and low-coherence interferometry probe: toward in vivo implementation. <i>Journal of Biomedical Optics</i> , 2016 , 21, 107005	3.5	8
163	Optical Coherence Elastography 2015 , 1007-1054		8
162	Label-free molecular profiling for identification of biomarkers in carcinogenesis using multimodal multiphoton imaging. <i>Quantitative Imaging in Medicine and Surgery</i> , 2019 , 9, 742-756	3.6	7
161	Non-invasive monitoring of pharmacodynamics during the skin wound healing process using multimodal optical microscopy. <i>BMJ Open Diabetes Research and Care</i> , 2020 , 8,	4.5	7
160	Intraoperative optical coherence tomography of the human thyroid: Feasibility for surgical assessment. <i>Translational Research</i> , 2018 , 195, 13-24	11	7
159	In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy. <i>Journal of Biomedical Optics</i> , 2016 , 21, 86006	3.5	7
158	Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy 2010 ,		7
157	Portable real-time optical coherence tomography system for intraoperative imaging and staging of breast cancer 2007 ,		7
156	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. <i>Translational Vision Science and Technology</i> , 2014 , 3, 10	3.3	7
155	Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. <i>Optics Express</i> , 2019 , 27, 12998-13014	3.3	7

(2013-2020)

154	Assessing the Effect of Middle Ear Effusions on Wideband Acoustic Immittance Using Optical Coherence Tomography. <i>Ear and Hearing</i> , 2020 , 41, 811-824	3.4	7
153	A quantitative framework for the analysis of multimodal optical microscopy images. <i>Quantitative Imaging in Medicine and Surgery</i> , 2017 , 7, 24-37	3.6	6
152	Computed Optical Interferometric Imaging: Methods, Achievements, and Challenges. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2016 , 22,	3.8	6
151	Polarization-sensitive interferometric synthetic aperture microscopy. <i>Applied Physics Letters</i> , 2015 , 107, 211106	3.4	6
150	Molecular identification by generating coherence between molecular normal modes using stimulated Raman scattering. <i>Optics Letters</i> , 2009 , 34, 1756-8	3	6
149	Full-field spectral-domain optical interferometry for snapshot three-dimensional microscopy. <i>Biomedical Optics Express</i> , 2020 , 11, 5903-5919	3.5	6
148	Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm. <i>Optics Express</i> , 2020 , 28, 23306-23319	3.3	6
147	Two-photon microscope using a fiber-based approach for supercontinuum generation and light delivery to a small-footprint optical head. <i>Optics Letters</i> , 2020 , 45, 909-912	3	6
146	Local wavefront mapping in tissue using computational adaptive optics OCT. <i>Optics Letters</i> , 2019 , 44, 1186-1189	3	6
145	Detection of weak near-infrared optical imaging signals under ambient light by optical parametric amplification. <i>Optics Letters</i> , 2019 , 44, 4391-4394	3	6
144	Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H. <i>Scientific Reports</i> , 2021 , 11, 3308	4.9	6
143	Quantitative characterization of mechanically indented in vivo human skin in adults and infants using optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2017 , 22, 34001	3.5	5
142	Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier. <i>Journal of Biophotonics</i> , 2015 , 8, 512-21	3.1	5
141	Real-time three-dimensional histology-like imaging by label-free nonlinear optical microscopy. <i>Quantitative Imaging in Medicine and Surgery</i> , 2020 , 10, 2177-2190	3.6	5
140	Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. <i>Journal of Innovative Optical Health Sciences</i> , 2020 , 13,	1.2	5
139	Retinal imaging with en face and cross-sectional optical coherence tomography delineates outer retinal changes in cancer-associated retinopathy secondary to Merkel cell carcinoma. <i>Journal of Ophthalmic Inflammation and Infection</i> , 2015 , 5, 53	2.3	5
138	Comparison of a MEMS-Based Handheld OCT Scanner With a Commercial Desktop OCT System for Retinal Evaluation. <i>Translational Vision Science and Technology</i> , 2014 , 3, 3	3.3	5
137	Tailoring Hydrogel Adhesion to Polydimethylsiloxane Substrates Using Polysaccharide Glue. <i>Angewandte Chemie</i> , 2013 , 125, 7087-7090	3.6	5

136	The Gold Nanorod-Biology Interface: From Proteins to Cells to Tissue. <i>Current Physical Chemistry</i> , 2013 , 3,	0.5	5
135	The impact of aberrations on object reconstruction with interferometric synthetic aperture microscopy 2011 ,		5
134	Emergence of self-organized long-period fiber gratings in supercontinuum-generating optical fibers. <i>Optics Letters</i> , 2009 , 34, 668-70	3	5
133	Group refractive index reconstruction with broadband interferometric confocal microscopy. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2008 , 25, 1156-64	1.8	5
132	Plastinated tissue samples as three-dimensional models for optical instrument characterization. <i>Optics Express</i> , 2008 , 16, 16272-83	3.3	5
131	Optical characterization of contrast agents for optical coherence tomography 2003 , 4967, 129		5
130	Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy. <i>Journal of Biomedical Optics</i> , 2017 , 22, 70502	3.5	5
129	Depixelation and enhancement of fiber bundle images by bundle rotation. <i>Applied Optics</i> , 2020 , 59, 536	5-5 <i>:4</i> 4	5
128	Dynamic Signatures of Lipid Droplets as New Markers to Quantify Cellular Metabolic Changes. <i>Analytical Chemistry</i> , 2020 , 92, 15943-15952	7.8	5
127	The Cholesterol Metabolite 27HC Increases Secretion of Extracellular Vesicles Which Promote Breast Cancer Progression. <i>Endocrinology</i> , 2021 , 162,	4.8	5
126	Optical Coherence Tomography for Cancer Detection 2010 , 209-250		5
125	Filtering for unwrapping noisy Doppler optical coherence tomography images for extended microscopic fluid velocity measurement range. <i>Optics Letters</i> , 2016 , 41, 4024-7	3	4
124	Comparison between optical coherence tomographic and histopathologic appearances of artifacts caused by common surgical conditions and instrumentation. <i>Veterinary Surgery</i> , 2019 , 48, 1361-1371	1.7	4
123	Implementation and evaluation of Google Glass for visualizing real-time image and patient data in the primary care office 2014 ,		4
122	Interferometric synthetic aperture microscopy implementation on a floating point multi-core digital signal processer 2013 ,		4
121	Expression order of alpha-v and beta-3 integrin subunits in the N-methyl-N-nitrosourea-induced rat mammary tumor model. <i>Cancer Investigation</i> , 2009 , 27, 496-503	2.1	4
120	Coherent optical imaging and guided interventions in breast cancer: translating technology into clinical applications 2008 ,		4
119	Modeling and measurement of tissue elastic moduli using optical coherence elastography 2008,		4

(2020-2020)

118	characterization of minipig skin as a model for dermatological research using multiphoton microscopy. <i>Experimental Dermatology</i> , 2020 , 29, 953-960	4	4
117	Effect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties. <i>Environmental Science & Environmental Science & Env</i>	10.3	4
116	Longitudinal optical coherence tomography to visualize the in vivo response of middle ear biofilms to antibiotic therapy. <i>Scientific Reports</i> , 2021 , 11, 5176	4.9	4
115	Differentiation of breast tissue types for surgical margin assessment using machine learning and polarization-sensitive optical coherence tomography. <i>Biomedical Optics Express</i> , 2021 , 12, 3021-3036	3.5	4
114	Synthetic polarization-sensitive optical coherence tomography by deep learning. <i>Npj Digital Medicine</i> , 2021 , 4, 105	15.7	4
113	Characterization of Magnetic Nanoparticle-Seeded Microspheres for Magnetomotive and Multimodal Imaging. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25,	3.8	3
112	. IEEE Journal of Selected Topics in Quantum Electronics, 2014 , 20, 4-7	3.8	3
111	Ratiometric analysis of optical coherence tomography-measured in vivo retinal layer thicknesses for the detection of early diabetic retinopathy. <i>Journal of Biophotonics</i> , 2017 , 10, 1430-1441	3.1	3
110	Introduction to the feature issue on the 25 year anniversary of optical coherence tomography. <i>Biomedical Optics Express</i> , 2017 , 8, 3289-3291	3.5	3
109	A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics 2015 ,		3
108	In vivointra-operative breast tumor margin detection using a portable OCT system with a handheld surgical imaging probe 2014 ,		3
107	Optical parametrically gated microscopy in scattering media. <i>Optics Express</i> , 2014 , 22, 22547-60	3.3	3
106	Static third-harmonic lines in widely variable fiber continuum generation. <i>Physical Review A</i> , 2014 , 89,	2.6	3
105	Advances in contrast enhancement for optical coherence tomography. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2006 , 2006, 121-4		3
104	Light-scattering spectroscopic optical coherence tomography for differentiating cells in 3D cell culture 2006 , 6088, 26		3
103	Retinal response of Macaca mulatta to picosecond laser pulses of varying energy and spot size. Journal of Biomedical Optics, 2004 , 9, 1288-96	3.5	3
102	Simultaneous two-photon activation and imaging of neural activity based on spectral-temporal modulation of supercontinuum light. <i>Neurophotonics</i> , 2020 , 7, 045007	3.9	3
101	Single-shot two-dimensional spectroscopic magnetomotive optical coherence elastography with graphics processing unit acceleration. <i>Optics Letters</i> , 2020 , 45, 4124-4127	3	3

100	Optical coherence tomography for rapid tissue screening and directed histological sectioning. <i>Analytical Cellular Pathology</i> , 2012 , 35, 129-43	3.4	3
99	Phase-based Eulerian motion magnification reveals eardrum mobility from pneumatic otoscopy without sealing the ear canal. <i>JPhys Photonics</i> , 2020 , 2,	2.5	3
98	Assessing the severity of psoriasis through multivariate analysis of optical images from non-lesional skin. <i>Scientific Reports</i> , 2020 , 10, 9154	4.9	3
97	Compressive sensing for polarization sensitive optical coherence tomography. <i>Journal Physics D: Applied Physics,</i> 2021 , 54, 294005	3	3
96	Inactivation and sensitization of Pseudomonas aeruginosa by microplasma jet array for treating otitis media. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 48	8.2	3
95	Real-time pixelwise phasor analysis for video-rate two-photon fluorescence lifetime imaging microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 4003-4019	3.5	3
94	High-speed label-free two-photon fluorescence microscopy of metabolic transients during neuronal activity. <i>Applied Physics Letters</i> , 2021 , 118, 081104	3.4	3
93	Intraoperative Label-Free Multimodal Nonlinear Optical Imaging for Point-of-Procedure Cancer Diagnostics. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2021 , 27,	3.8	3
92	In Vivo Assessment of Engineered Skin Cell Delivery with Multimodal Optical Microscopy. <i>Tissue Engineering - Part C: Methods</i> , 2017 , 23, 434-442	2.9	2
91	Molecular Optical Coherence Tomography Contrast Enhancement and Imaging 2015 , 1429-1454		2
90	Evaluating optical coherence tomography for surgical margin assessment of canine mammary tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 697-706	2.5	2
89	Dynamic Tracking Algorithm for Time-Varying Neuronal Network Connectivity using Wide-Field Optical Image Video Sequences. <i>Scientific Reports</i> , 2020 , 10, 2540	4.9	2
88	Magnetomotive optical coherence microscopy for cell dynamics and biomechanics 2011,		2
87	Multimodality microscopy of cell dynamics in three-dimensional engineered and natural tissues 2009 ,		2
86	Optical pulse shaping for selective excitation of coherent molecular vibrations by stimulated Raman scattering 2009 ,		2
85	Long-term time-lapse multimodal microscopy for tracking cell dynamics in live tissue 2011,		2
84	Mode-locked solid state laser sources for optical coherence tomography 1997,		2
83	Real-Time Interferometric Synthetic Aperture Microscopy for Clinical Applications. <i>Optics and Photonics News</i> , 2008 , 19, 32	1.9	2

(2016-2008)

82	Localized waveguide formation in germanosilicate fiber transmitting femtosecond IR pulses. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 274-278	1.7	2
81	Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography 2008 ,		2
80	High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography 2006 ,		2
79	Real-time digital design for an optical coherence tomography acquisition and processing system 2004 ,		2
78	Gaussian beam deconvolution in optical coherence tomography 2005,		2
77	Optical coherence elastography of developing biological tissues 2005,		2
76	New noninvasive imaging technique for cataract evaluation in the rhesus monkey 1995,		2
75	Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. <i>Journal of Biomedical Optics</i> , 2020 , 25,	3.5	2
74	Dynamic optical coherence elastography and applications 2009,		2
73	Human Breast Cancer Identification by K-Space Analysis of Optical Coherence Tomography Images 2006 ,		2
72	Single-photon peak event detection (SPEED): a computational method for fast photon counting in fluorescence lifetime imaging microscopy. <i>Optics Express</i> , 2021 , 29, 37759-37775	3.3	2
71	Interferometric Synthetic Aperture Microscopy (ISAM) 2015 , 965-1004		2
70	The feasibility and utility of optical coherence tomography directed histopathology for surgical margin assessment of canine mast cell tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 616-6	23 ^{2.5}	2
69	Ratiometric analysis of in vivo retinal layer thicknesses in multiple sclerosis. <i>Journal of Biomedical Optics</i> , 2016 , 21, 95001	3.5	2
68	Diagnostic accuracy of optical coherence tomography for assessing surgical margins of canine soft tissue sarcomas in observers of different specialties. <i>Veterinary Surgery</i> , 2021 , 50, 111-120	1.7	2
67	Simultaneous 4-phase-shifted full-field optical coherence microscopy. <i>Biomedical Optics Express</i> , 2021 , 12, 981-992	3.5	2
66	Optical coherence tomography imaging of excised canine apocrine gland anal sac adenocarcinoma tumours. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 759-762	2.5	1
65	Computational adaptive optics of the human retina 2016,		1

64	Tunable femtosecond Cherenkov fiber laser 2014 ,		1
63	Real-time computed optical interferometric tomography 2014 ,		1
62	Dynamic method of optical coherence elastography in determining viscoelasticity of polymers and tissues. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2013 , 2013, 117-20	0.9	1
61	Optical arbitrary waveform characterization using linear spectrograms. <i>Optics Communications</i> , 2010 , 283, 3017-3021	2	1
60	Endoscopic optical coherence tomography 1997 ,		1
59	Interferometric Synthetic Aperture Microscopy 2008,		1
58	Nonlinear interferometric vibrational imaging of biological tissue 2008,		1
57	Real-time inverse scattering for optical coherence tomography 2007,		1
56	High numerical aperture full-field optical coherence tomography with space-invariant resolution without scanning the focus 2007 ,		1
55	Phase-resolved spectral-domain magnetomotive optical coherence tomography 2007,		1
54	Optical manipulation of silicon microparticles in biological environments 2003,		1
53	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues 2005 , 5699, 102		1
52	Optical coherence tomography of cell dynamics in three-dimensional engineered tissues 2005,		1
51	Surgical Guidance and Intervention 2001 , 613-647		1
50	An inverse scattering method for catheter-based optical coherence tomography 2006,		1
49	Differentiation of Ex Vivo Human Breast Tissue using Polarization-Sensitive Optical Coherence Tomography 2014 ,		1
48	Computed optical interferometric tomography for high-speed volumetric cellular imaging 2014,		1
47	K-means clustering of coherent Raman spectra from extracellular vesicles visualized by label-free multiphoton imaging. <i>Optics Letters</i> , 2020 , 45, 3613-3616	3	1

(2021-2020)

46	Development of a fast calibration method for image mapping spectrometry. <i>Applied Optics</i> , 2020 , 59, 6062-6069	1.7	1
45	3D OCT characterization and quantification of refractive indices of bacteria and biofilms with antibiotic interventions 2021 ,		1
44	Development of a Smartphone-Based Skin Simulation Model for Medical Education. <i>Simulation in Healthcare</i> , 2021 , 16, 414-419	2.8	1
43	Interferometric synthetic aperture microscopy 2007 ,		1
42	In-Vivo Catheter-Based Imaging with Optical Coherence Tomography 1998,		1
41	Intraoperative OCT in Surgical Oncology 2015 , 2393-2412		1
40	Interferometric Synthetic Aperture Microscopy with Computational Adaptive Optics for High-Resolution Tomography of Scattering Tissue 2012 ,		1
39	Tracking the formation and degradation of fatty-acid-accumulated mitochondria using label-free chemical imaging. <i>Scientific Reports</i> , 2021 , 11, 6671	4.9	1
38	Computational adaptive optics for polarization-sensitive optical coherence tomography. <i>Optics Letters</i> , 2021 , 46, 2071-2074	3	1
37	Handheld Briefcase Optical Coherence Tomography with Real-Time Machine Learning Classifier for Middle Ear Infections. <i>Biosensors</i> , 2021 , 11,	5.9	1
36	Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. <i>Biotechnology Journal</i> , 2021 , 16, e2000629	5.6	1
35	In vivo dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography. <i>Journal of Biophotonics</i> , 2021 , 14, e202000215	3.1	1
34	Efficacy of endotracheal tube suctioning in intubated intensive care unit patients determined by catheter-based optical coherence tomography-a pilot study. <i>Quantitative Imaging in Medicine and Surgery</i> , 2021 , 11, 1-8	3.6	1
33	Ultra-parallel label-free optophysiology of neural activity. <i>IScience</i> , 2022 , 25, 104307	6.1	1
32	Introduction to the Special Issue on Biophotonics P art 2. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 703-705	3.8	О
31	Imaging and characterization of transitions in biofilm morphology via anomalous diffusion following environmental perturbation <i>Biomedical Optics Express</i> , 2022 , 13, 1654-1670	3.5	O
30	flimview: A software framework to handle, visualize and analyze FLIM data. F1000Research,9, 574	3.6	О
29	Roadmap on bio-nano-photonics. <i>Journal of Optics (United Kingdom)</i> , 2021 , 23, 073001	1.7	O

28	Diagnostic accuracy of optical coherence tomography for surgical margin assessment of feline injection-site sarcoma. <i>Veterinary and Comparative Oncology</i> , 2021 , 19, 632-640	2.5	O
27	Label-free metabolic and structural profiling of dynamic biological samples using multimodal optical microscopy with sensorless adaptive optics <i>Scientific Reports</i> , 2022 , 12, 3438	4.9	O
26	Self-locomotive, antimicrobial microrobot (SLAM) swarm for enhanced biofilm elimination. <i>Biomaterials</i> , 2022 , 121610	15.6	0
25	Low-noise femtosecond Cherenkov fiber laser, continuously tunable across the entire red-green-blue spectral range. <i>EPJ Web of Conferences</i> , 2019 , 205, 01002	0.3	
24	Data Analysis and Signal Postprocessing for Optical Coherence Tomography 2015 , 407-436		
23	Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources 2015 , 1237-1256		
22	Introduction to the BIOMED 2014 feature issue. Biomedical Optics Express, 2014, 5, 4144	3.5	
21	Optical Coherence Imaging for Surgical Pathology Assessment 2013 , 215		
20	All-fiber femtosecond Cherenkov source. EPJ Web of Conferences, 2013, 41, 10017	0.3	
19	Wave-Breaking Extended Coherent Fiber: Supercontinuum Pulse Compression. <i>Optics and Photonics News</i> , 2012 , 23, 55	1.9	
18	Anomalous bending effect in photonic crystal fibers. Optics Express, 2008, 16, 5617-22	3.3	
17	Nonlinear Interferometric Vibrational Imaging. ACS Symposium Series, 2007, 236-258	0.4	
16	Comment on "In vivo cancer diagnosis with optical spectroscopy and acoustically induced blood stasis using a murine Mca35 model," [Med. Phys. 33, 1623-1633 (2006)]. <i>Medical Physics</i> , 2007 , 34, 1130	4.4	
15	Demonstration of inverse scattering in optical coherence tomography 2006 , 6079, 312		
14	Use of molecular beacons for the detection of bacteria in microfluidic devices 2003 , 4982, 170		
13	Nonlinear Interferometric Vibrational Imaging with Differentiation of Resonant CARS from Nonresonant Four-Wave Mixing Processes 2004 , TuB3		
12	Nonlinear interferometric vibrational imaging of molecular species 2004 , 5321, 149		
11	High-resolution in-vivo intra-arterial imaging with optical coherence tomography 1999 , 3590, 324		

LIST OF PUBLICATIONS

10	Endoscopic optical coherence tomography imaging for surgical diagnostics and guidance in the gastrointestinal tract 1999 , 3595, 158
9	Visualising Middle Ear Biofilms in Otitis Media: a new benchmark for successful treatment 2012 , 21, 94-95
8	Computational Aberration Correction for Human Retinal Imaging. <i>Optics and Photonics News</i> , 2015 , 2015, 43
7	Optical Coherence Tomography and Developmental Biology 2001 , 505-538
6	Optical Coherence Elastography of Engineered and Developing Tissue. <i>Tissue Engineering</i> , 2006 , 060210070209003
5	Optical Coherence Tomography using Femtosecond Lasers. <i>Springer Series in Chemical Physics</i> , 1998 , 150-152
4	Nonlinear Interferometric Vibrational Imaging and Spectroscopy 2014 , 273-294
3	Optical Coherence Tomography in Tissue Engineering 2015 , 1965-2001
2	DSP Technology and Methods for OCT 2015 , 437-458
1	Label-Free Multimodal Multiphoton Intravital Imaging. <i>Advances in Experimental Medicine and Biology</i> , 2021 , 3233, 127-146